Министерство науки и высшего образования Российской Федерации ФГБОУ ВО «Тверской государственный университет»

Утверждаю:

Проректор по ОдиМП

Сердитова Н.Е.

ж04» февраля 2025 г.

Рабочая программа дисциплины (с аннотацией) Дополнительные главы теоретической физики

Для обучающихся 3-4-х курсов направлений 03.03.02 Физика, 03.03.03 Радиофизика, 1-2-ых курсов направлений 03.04.02 Физика, 03.04.03 Радиофизика очной формы обучения

Составитель: к.ф.-м.н., доцент Зубков В.В.

І. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины является закрепление и углубление студентами фундаментальных принципов, лежащих в основе теоретических представлений об окружающем мире.

Задачами освоения дисциплины являются:

- подробный разбор фундаментальных принципов, отражающих суть той или иной парадигмы современной теоретической физики;
- углубленное изучение математических методов теоретической физики;
- подробный анализ так называемых парадоксов, неизбежно возникающих в рамках новых физических парадигм.

2. Место дисциплины в структуре ООП

Факультативная дисциплина «Дополнительные главы теоретической физики» тесно связана с дисциплинами теоретической физики, читаемыми для студентов физических специальностей вузов. Дисциплина «Дополнительные главы теоретической физики» содержит материал, который ввиду ограниченности аудиторных часов, не может быть в полной мере раскрыт в рамках стандартных курсов теоретической физики. Подобранный материал призван помочь студентам, изучающим теоретическую физику, на более глубоком уровне освоить принципиальные вопросы фундаментальной физики.

Теоретические дисциплины и практики, для которых освоение данной дисциплины необходимо как предшествующее: основные разделы курсов теоретической физики, а именно, теоретической механики, электродинамики и квантовой механики. Необходимо также владение основами математического аппарата в рамках таких курсов как математический анализ, алгебра, векторный и тензорный анализ. Вместе с тем большинство необходимых как физических, так и математических понятий и законов вводятся при изложении дисциплины по мере необходимости.

3. Объем дисциплины: 2 зачетных единицы, 72 академических часа, **в том числе**:

контактная аудиторная работа: лекции 36 часов

самостоятельная работа: 36 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения	Планируемые результаты обучения	
образовательной программы	по дисциплине	
(формируемые компетенции)		
УК-1. Способен осуществлять	УК-1.1. Анализирует задачу, выделяя ее	
поиск, критический анализ и синтез	базовые составляющие;	
информации, применять системный	УК-1.2. Определяет, интерпретирует и	
подход для решения поставленных	ранжирует информацию, требуемую для	
задач	решения поставленной задачи	
ОПК-1. Способен применять	ОПК-1.2. Применяет знания в области	
базовые знания в области физико-	физико-математических наук при решении	
математических и (или)	практических задач в сфере	
естественных наук в сфере своей	профессиональной деятельности.	
профессиональной деятельности.		

- 5. Форма промежуточной аттестации и семестр прохождения зачет.
- 6. Язык преподавания: русский.

II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий.

Учебная программа – наименование разделов и тем	Всего (час.)	Контактная работа (час.)		Самостоятельная работа, в том числе Контроль (час.)
		Лекции	Практиче- ские занятия	
1. Вариационные принципы современной физики. Группы преобразований. Связь симметрий пространства и времени и теорема Э. Нётер. Калибровочные симметрии	10	5		5
2. Лагранжева и гамильтонова динамика частиц и полей. Методы решения. Функции Грина. Примеры из классической механики, классической теории поля, физики конденсированного состояния	8	4		4
3. Эволюция квантовых систем. Картина Гайзенберга, Шредингера. Пропагатор. Метод интегралов по траекториям. Интегралы квантовых систем	10	5		5
4. Основы специальной теории относительности. Принципиальные вопросы. Мир Минковского. Релятивистская кинематика и динамика. Эффекты и парадоксы СТО: парадокс шеста и сарая, парадокс близнецов, парадокс Белла, видимая форма быстро движущихся тел, масса и энергия в СТО	12	6		6
5. Необратимость в физике. Эредитарность. Вариационный принцип для необратимой динамики системы частиц и полей	8	4		4
6. Парадоксы квантовой механики. Парадокс Эйнштейна-Пдольского-Розена. Нелокальность квантовой теории. Квантовая телепортация. Квантовый Чеширский кот. Эксперимент с отложенным выбором. Мысленный эксперимент Элицура и Вайдмана и его проверка. Неравенства Белла и их проверка. GHZ – парадокс. Эффект Ааронова-Бома	12	6		6
7. Классическая теория поля. Основные модели. Методы построения лагранжианов	12	6		6

Уравнения движения. Перекомпоновка			
числа степеней свободы. Спонтанное			
нарушение симметрии. Голдстоуновские			
бозоны. Механизм Хигтса			
ИТОГО	72	36	36

III. Образовательные технологии

Образовательные технологии по каждой теме: традиционная лекция, и активное слушание.

Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- тематика рефератов и методические рекомендации по их написанию;
- методические рекомендации по организации самостоятельной работы студентов;
 - мультимедийные презентации.

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Для проведения текущей и промежуточной аттестации:

ОПК-1. Способен применять базовые знания в области физикоматематических и (или) естественных наук в сфере своей профессиональной деятельности

Примеры задач к зачёту:

Задание 1. Пусть дана функция Лагранжа

$$\mathcal{L} = \frac{1}{2} \sum_{\alpha=1}^{s} m_{\alpha} \dot{q}_{\alpha}^{2}.$$

Рассмотрим преобразования Галилея

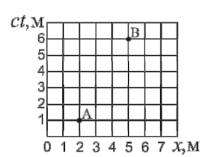
$$t = t',$$

$$q'_{\alpha} = q_{\alpha} + t\delta v,$$

где $\delta v \equiv \lambda$ — постоянная величина. Пользуясь теоремой Эмми Нетер, найдите отвечающий этой симметрии интеграл движения.

Задание 2. Для группы растяжений

$$x' = xe^{\tau},$$


$$y' = ye^{2\tau},$$

$$z' = ze^{3\tau}.$$

найти инфинитезимальный оператор и независимые инварианты группы.

Задание 3. Показать, что преобразование поворота относительно оси z удовлетворяет всем условиям теоремы Нетер для системы с лагранжианом $\mathcal{L} = f(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \Omega(t)(x\dot{y} - y\dot{x})$. Найти соответствующий первый интеграл.

Задание 4: На диаграмме Минковского показаны координаты событий A и B. Найти промежуток времени между этими событиями в CO, в которой эти события произошли в одной точке.

Задание 5. Астронавт, движущийся со скоростью u = 0.4c , наблюдает объект, обгоняющий его со скоростью v = 0.5c относительно корабля. Чему равна скорость объекта относительно неподвижной системы отсчёта?

Задание 6. Пусть ϕ^{μ} — массивное вещественное векторное поле Прока, которое взаимодействует с заданным внешним током J^{μ} , причём предполагается, что этот ток сохраняется: $\partial_{\mu}J^{\mu}=0$. Лагранжиан этой системы имеет вид:

$$\mathcal{L} = \frac{1}{8\pi} \phi^{\mu} \left[\left(\Box g_{\mu\nu} - \partial_{\mu} \partial_{\nu} \right) + M^{2} g_{\mu\nu} \right] \phi^{\eta} - J_{\mu} \phi^{\mu} .$$

Определить размерность поля ϕ^μ и его массы M . Вывести уравнения Эйлера–Лагранжа.

Задание 7. Как может выглядеть преобразование, полностью устраняющее поле Голдстоуна из лагранжиана Хиггса? Написать преобразованный лагранжиан.

Задание 8. Гамильтониан двухуровневой системы в матричном представлении имеет вид:

$$H = \hbar \begin{pmatrix} \omega_1 & \omega_2 \\ \omega_2 & \omega_1 \end{pmatrix}.$$

Пусть базисные векторы есть

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

В начальный момент $|\psi(0)\rangle = |0\rangle$. Найти а) собственные значения и собственные векторы гамильтониана, записав последние в виде разложения по базисным векторам;

- а) эволюцию состояния, используя оператор эволюции
- б) эволюцию состояния, решив уравнение Шредингера

$$i\hbar \frac{d}{dt} |\psi\rangle = \hat{H} |\psi\rangle.$$

Способ аттестации: Беседа со студентом

Критерии оценки: Ориентируется в теории и методах решения задач подобного типа – зачет.

Задание 9: Что называется калибровочной инвариантностью? Векторный потенциал в классической физике и квантовой механике. Эффект Ааронова-Бома. Объясните.

Задание 10. Сформулируйте вариационный принцип для необратимых систем.

Задание 11. Приведите примеры эредитарных систем в физике.

Задание 12. Сформулируйте теорему Эмми Нетер. Приведите примеры из классической механики и классической теории поля.

Задание 13. В чем заключается механизм Хиггса? Запишите лагранжиан Хиггса.

Способ аттестации: Беседа со студентом.

УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.

Примеры тем для самостоятельного изучения:

- 1. Вариационные принципы в механике сплошной среды.
- 2. Флуктуация вакуума. Сдвиг Лэмба.
- 3. Прецессия Томаса.
- 4. No-Interaction теорема.
- 5. Проблема самодействия в классической электродинамике.
- 6. Геометрия Лобачевского и пространство скоростей в специальной теории относительности.
- 7. Жесткие и нежесткие системы отсчета в СТО.
- 8. Кватернионное описание релятивистской физики.
- 9. Эвереттовская интерпретация квантовой механики.
- 10. Квантовый дарвенизм Цурека.
- 11. Парадокс друга Вигнера и реальность вектора состояния.
- 12. Вигнеровское представление и квантовая томография.
- 13. Квантовые вычисления: алгоритм Дойтча-Джоза.
- 14. Квантовая криптография. Протокол Ч. Беннета и Ж. Брассара (ВВ84).
- 15. Концепция «волны-пилота» Дэвида Бома.

Темы может предлагать студент самостоятельно, исходя из своих интересов.

Способ аттестации: беседа со студентом.

Критерии оценки: провел анализ литературы по выбранной тематике, показал знание материала и четко изложил результаты исследования – зачет.

V. Учебно-методическое и информационное обеспечение дисциплины

- 1) Рекомендуемая литература
- а) Основная литература:
- 1. Медведев, Б. В. Начала теоретической физики: механика, теория поля, элементы квантовой механики: учебное пособие / Б. В. Медведев. 2-е изд., испр. и доп. Москва: Физматлит, 2007. 599 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=69239

- 2. Зубков В.В. Группа преобразований пространства-времени в классической механике и теорема Эммии Нетер: Учебное пособие. Тверь. 2011. 38с.
- 3. Логунов А.А. Лекции по теории относительности.-М.: Наука, 2002.- 175 с.
- 4. Угаров, В. А. Специальная теория относительности / В. А. Угаров. Изд. 2-е, перераб. и доп. Москва : Наука, 1977. 384 с. : ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=481486
- 5. Косяков Б.П. Введение в классическую теорию частиц и полей. -М.: Ижевск, НИЦ «Регулярная и хаотическая динамика», 2017.-656с.
- 6. Львовский, А. Л. Отличная квантовая механика : учебное пособие : в 2 частях. Часть 1 / Александр Львовский ; пер. с англ. Москва : Альпина нон-фикшн, 2019. 422 с. ISBN 978-5-91671-952-9. Текст : электронный. URL: https://znanium.com/catalog/product/1221824.
- 7. Львовский, А.Л. Отличная квантовая механика : решения. Часть 2 : учебно-практическое пособие / А.Л. Львовский. Москва : Альпина нон-фикшн, 2019. 304 с. ISBN 978-5-91671-952-9. Текст : электронный. URL: https://znanium.com/catalog/product/1222049.
- 8. Фейнман Р., Хибс А. Квантовая механика и интегралы по траекториям М.: Мир, 1968. 381 с. https://biblioclub.ru/index.php?page=book_red&id=499382
- 9. Гринштейн Д., Зайонц А. Квантовый вызов. Современные исследования оснований квантовой механики. Долгопрудный: Издательский Дом «Интеллект», 2012. 432 с. https://znanium.com/catalog/product/1117883
 - б) Дополнительная литература:
- 1. Алешкевич, В. А. Курс общей физики. Механика : учебник / В. А. Алешкевич, Л. Г. Деденко, В. А. Караваев. Москва : Физматлит, 2011. 472 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=69337
- 2. Принцип относительности. Сборник работ по специальной теории относительности. / Под ред. А.А. Тяпкина. М.: Атомиздат, 1973. 332 с.

- 3. Тяпкин А.А. Об истории возникновения «теории относительности». Дубна: ОИЯИ, 2004. 152 с.
- 4. Логунов А.А. Лекции по теории относительности и гравитации: современный анализ проблемы. М.: Наука, 2005. 318с.
- 5. Алешкевич В.А. О преподавании специальной теории относительности на основе современных экспериментальных данных // УФН 2012. Т. 182. №12. С. 1301-1318.
- 6. Логунов А.А. Анри Пуанкаре и теория относительности. М.: Наука, 2004. 256с.
- 7. Окунь Л.Б. Понятие массы. Масса, энергия, относительность // Успехи физических наук 1989. Т. 158. С. 511-530.
- 8. Окунь Л. Б. Теория относительности и теорема Пифагора // Успехи физических наук 2008. Т. 178. С. 653-663.
- 9. Окунь Л. Б. Формула Эйнштейна . «Не смеётся ли господь бог?» // Успехи физических наук 2008. Т. 178. С. 541-553.
- 10. Хрюнов, А. В. Основы релятивистской физики: электромагнитные поля, релятивистская механика частиц, релятивистская кинетическая теория, вариационные принципы электродинамики и механики, релятивистская механика вращательных движений, дистанционные измерения / А. В. Хрюнов. Изд. 2-е, существенно перераб. и доп. Москва: URSS, сор. 2017. 542 с.: ил., табл.; 22 см.; ISBN 978-5-9710-4335-5
 - 11. Вайскопф В. Физика в двадцатом столетии. М.: Атомиздат, 1977. 272 с.
- 12. Белокуров В.В., Тимофеевская О.Д., Хрусталев О.А. Квантовая телепортация обыкновенное чудо. Ижевск: РХД, 2000,256 с.
- 13. Жизан Н. Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса. М.: Альпина нон-фикшн, 2016. 202 с. https://znanium.com/catalog/product/550060
- 2) Лицензионное программное обеспечение и свободно распространяемое программное обеспечение, в том числе отечественного производства:

Google Chrome;

Яндекс Браузер;

Kaspersky Endpoint Security 10;

Многофункциональный редактор ONLYOFFICE;

OC Linux Ubuntu.

- 3) Современные профессиональные базы данных и информационные справочные системы
 - 1.96C«ZNANIUM.COM» www.znanium.com
 - 2.ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/
 - 3.ЭБС «Лань» http://e.lanbook.com

VI. Методические материалы для обучающихся по освоению дисциплины

Методические рекомендации по организации самостоятельной работы студентов:

- 1) Изучить рекомендуемую литературу. Провести поиск дополнительной литературы в интернете.
- 2) Просмотреть задачи, разобранные на аудиторных занятиях. Задачи на зачете будут из тех, что рассматриваются на занятиях.
- 3) Разобрать задачи, рекомендованные преподавателем для самостоятельного решения (как правило, это задания, связанные с развитием рассмотренных на занятии задач), используя, при необходимости, примеры решения аналогичных задач.
- 4) Обсудить проблемы, возникшие при решении задач с преподавателем. Для получения зачёта необходимо:
- 1) Решить задачи, рекомендуемые преподавателем на занятиях.
- 2) Подготовить исследовательскую реферативную работу по выбранной теме и доложить ее результаты преподавателю.

VII. Материально-техническое обеспечение

Учебная аудитория с мультимедийной установкой.

VIII. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел	Описание внесенных	Реквизиты документа,
	рабочей программы	изменений	утвердившего
	дисциплины		изменения
1.			
2.			