Документ подписан простой электронной подписью Информация о владельце:

ФИО: Смирнов Супти Пиколаевич тво науки и должность: врио ректора Дата подписания: 18.10.2023 ОТБОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель, ООП

БЩИЙ Заправнин / А.В. Язенин /

Серы 2020 года

Рабочая программа дисциплины (с аннотацией)

численные методы

Направление подготовки 02.03.02 ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

> Профиль подготовки Инженерия программного обеспечения

> > Для студентов 3-го курса Форма обучения – очная

> > > Составитель:

д.ф.-м.н., профессор К.М. Зингерман Зим

3ul

І. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины является: подготовка студентов к разработке и реализации на ЭВМ вычислительных алгоритмов решения математических задач, возникающих в процессе познания и использования в практической деятельности законов реального мира посредством математического моделирования.

Задачами освоения дисциплины являются:

- приобретение студентами знаний основных понятий, методов и алгоритмов вычислительной математики.
- приобретение студентами навыков решения типовых задач вычислительной математики, навыков разработки и тестирования программного обеспечения для решения этих задач.

2. Место дисциплины в структуре ООП

Дисциплина «Численные методы» относится к разделу «Математический» обязательной части Блока 1. Для изучения этой дисциплины необходимы базовые знания, полученные в результате изучения курсов математического анализа, алгебры, дифференциальных уравнений, комплексного анализа, навыки разработки алгоритмов и программ. Знания, полученные при изучении численных методов, могут быть использованы при изучении дисциплин «Методы оптимизации и исследование операций», «Компьютерная графика», при выполнении научно-исследовательской работы.

3. Объем дисциплины: 6 зачетных единиц, 216 академических часов, в том числе:

контактная аудиторная работа: лекции 62 часа, в т.ч. практическая подготовка 5 часов; практические занятия 31 час, в т.ч. практическая подготовка 4 часов;

контактная внеаудиторная работа: контроль самостоятельной работы 10 часов, в том числе расчетно-графическая работа 10 часов;

самостоятельная работа: 113 часа, в том числе контроль 32.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения образовательной программы (формируемые компетенции) ОПК-3 Способен к разработке	Планируемые результаты обучения по дисциплине
алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям	ОПК-3.1 Знает основные положения и концепции в области программирования ОПК-3.2 Знает архитектуру языков программирования ОПК-3.3 Составляет программы ОПК-3.4 Создает информационные ресурсы глобальных сетей, образовательного контента, средств тестирования систем

- **5.** Форма промежуточной аттестации и семестр прохождения зачет (5 семестр), РГР и экзамен (6 семестр).
 - 6. Язык преподавания русский.

П. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Учебная программа –	Всего		Контактная работа (час.)			Самостоя	
наименование разделов и тем	(час.)	Лекции Практическ		Контроль	тельная		
				ие за	нятия	самостоят	работа, в
					ельно		том числе
		всего	в т.ч. практическая подготовка	всего	в т.ч. практическая подготовка	работы (в том числе курсовая работа, РГР)	Контроль (час.)
Теория погрешностей	15	4	1	2	1		9
Интерполирование и приближение функций.	26	8	1	4	1	2	12
Численное дифференцирование и интегрирование.	24	6		4			14
Прямые методы решения систем линейных алгебраических уравнений	18	5		3		2	8
Итерационные методы решения систем линейных уравнений	26	8		4			14
Методы отыскания решений нелинейных уравнений и систем	26	8		4		2	12
Методы решения проблемы собственных значений	20	5		3			12
Интерполирование и приближение функций (продолжение)	12	2	1	1			9
Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений и систем	22	8	1	4	1	4	6
Численные методы решения краевых задач для обыкновенных дифференциальных уравнений.	27	8	1	2	1		17
ИТОГО	216	62	5	31	4	10	113

Ш. Образовательные технологии

Учебная программа — наименование разделов и тем (в строгом соответствии с разделом II РПД)	Вид занятия	Образовательные технологии	
Теория погрешностей	Лекции, практические занятия	 Изложение теоретического материала Решение задач 	
Интерполирование и приближение функций.	Лекции, практические занятия	 Изложение теоретического материала Решение задач Разработка программ для ЭВМ 	
Численное дифференцирование и интегрирование.	Лекции, практические занятия	 Изложение теоретического материала Решение задач Разработка программ для ЭВМ 	
Прямые методы решения систем линейных алгебраических уравнений	Лекции, практические занятия	 Изложение теоретического материала Решение задач Разработка программ для ЭВМ 	
Итерационные методы решения систем линейных уравнений	Лекции, практические занятия	 Изложение теоретического материала Решение задач Разработка программ для ЭВМ 	
Методы отыскания решений нелинейных уравнений и систем	Лекции, практические занятия	Изложение теоретического материала Решение задач Разработка программ для ЭВМ	
Методы решения проблемы собственных значений	Лекции, практические занятия	Изложение теоретического материала Решение задач Разработка программ для ЭВМ	
Интерполирование и приближение функций (продолжение)	Лекции, практические занятия	 Изложение теоретического материала Решение задач Разработка программ для ЭВМ 	
Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений	Лекции, практические занятия	 Изложение теоретического материала Решение задач Разработка программ для ЭВМ 	
и систем Численные методы решения краевых задач для обыкновенных дифференциальных уравнений.	Лекции, практические занятия	 Изложение теоретического материала Решение задач Разработка программ для ЭВМ 	

Преподавание учебной дисциплины строится на сочетании лекций, практических занятий и самостоятельной работы студентов, включающей

разработку программ для ЭВМ (расчетно-графическую работу). В процессе освоения дисциплины используются следующие образовательные технологии, способы и методы формирования компетенций: традиционные лекции, практические занятия в диалоговом режиме. Дисциплина предусматривает выполнение контрольных работ, собеседование по теоретическим вопросам.

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

ОПК-3 Способен к разработке алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям.

ОПК-3.1 Знает основные положения и концепции в области программирования.

ОПК-3.2 Знает архитектуру языков программирования.

- 1. Подготовить описание программы для приближенного вычисления интеграла по формуле Симпсона в соответствии с ГОСТ 19.402-78.
- 2. Подготовить описание программы для решения системы линейных алгебраических уравнений методом Гаусса с выбором главного элемента по столбцу в соответствии с ГОСТ 19.402-78.

Способ проведения – письменный.

Критерии оценивания:

Описание программы подготовлено правильно, с необходимой полнотой и с учетом всех требований ГОСТа – 3 балла.

Описание программы подготовлено с незначительными погрешностями — 2 балла.

Описание программы подготовлено с существенными неточностями – 1 балл.

Описание программы не подготовлено -0 баллов.

ОПК-3.3 Составляет программы.

- 1. Разработать алгоритм и программу для приближенного вычисления интеграла по формуле Симпсона.
- 2. Разработать алгоритм и программу для решения системы линейных алгебраических уравнений методом Гаусса с выбором главного элемента по столбцу.

Способ проведения – письменный.

Критерии оценивания:

Алгоритм и программа разработаны правильно и программа полностью решает поставленную задачу – 3 балла.

Алгоритм и программа разработаны с незначительными погрешностями – 2 балла.

Алгоритм и программа разработаны с существенными неточностями – 1 балл.

Алгоритм и программа не разработаны -0 баллов.

- ОПК-3.4 Создает информационные ресурсы глобальных сетей, образовательного контента, средств тестирования систем.
 - 1. Подготовить программу и методику испытаний программы для приближенного вычисления интеграла по формуле Симпсона в соответствии с ГОСТ 19.301-79.
 - 2. Подготовить программу и методику испытаний программы для решения системы линейных алгебраических уравнений методом Гаусса с выбором главного элемента по столбцу в соответствии с ГОСТ 19.301-79.

Способ проведения – письменный.

Критерии оценивания:

Программа и методика испытаний программы подготовлена правильно, с необходимой полнотой и с учетом всех требований ГОСТа – 3 балла.

Программа и методика испытаний программы подготовлена с незначительными погрешностями – 2 балла.

Программа и методика испытаний программы подготовлена с существенными неточностями – 1 балл.

Программа и методика испытаний программы не подготовлена – 0 баллов.

V. Учебно-методическое и информационное обеспечение дисциплины

1) Рекомендуемая литература

Основная литература:

- 1. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Лань, 2011. –[Электронный ресурс]. Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=2025
- 2. Орешкова М.Н. Численные методы: теория и алгоритмы: учебное пособие / М.Н. Орешкова. Архангельск: САФУ, 2015. 120 с.: схем., табл. Библиогр. в кн. ISBN 978-5-261-01040-1; [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=436397
- 3. Шевченко, А. С. Численные методы: учебное пособие / А. С. Шевченко. Москва: ИНФРА-М, 2022. 381 с. (Высшее образование: Бакалавриат). DOI 10.12737/996207. ISBN 978-5-16-014605-8. Текст: электронный. URL: https://znanium.com/catalog/product/996207

Дополнительная литература:

- 1. Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. СПб: Лань, 2009. 733 с. —[Электронный ресурс]. Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=400
- 2. Новиков, А. И. Численные методы линейной алгебра: учебное пособие / А. И. Новиков. Рязань: РГРТУ, 2021. 50 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/168043

2) Программное обеспечение

Компьютерный класс факультета прикладной математики и кибернетики № 46 (170002, Тверская обл., г.Тверь, Садовый переулок, д.35)				
Adobe Acrobat Reader DC - Russian	бесплатно			
Apache Tomcat 8.0.27	бесплатно			
Cadence SPB/OrCAD 16.6	Государственный контракт на поставку лицензионных программных продуктов 103 - ГК/09 от 15.06.2009			
GlassFish Server Open Source Edition 4.1.1	бесплатно			
Google Chrome	бесплатно			
Java SE Development Kit 8 Update 45 (64-bit)	бесплатно			
JetBrains PyCharm Community Edition 4.5.3	бесплатно			
JetBrains PyCharm Edu 3.0	бесплатно			
Kaspersky Endpoint Security 10 для Windows	Акт на передачу прав ПК545 от 16.12.2022			
Lazarus 1.4.0	бесплатно			
Mathcad 15 M010	Акт предоставления прав ИС00000027 от 16.09.2011			
MATLAB R2012b	Акт предоставления прав № Us000311 от 25.09.2012			
Многофункциональный редактор ONLYOFFICE бесплатное ПО	бесплатно			
OC Linux Ubuntu бесплатное ПО	бесплатно			
MiKTeX 2.9	бесплатно			
MSXML 4.0 SP2 Parser and SDK	бесплатно			
NetBeans IDE 8.0.2	бесплатно			
NetBeans IDE 8.2	бесплатно			
Notepad++	бесплатно			
Oracle VM VirtualBox 5.0.2	бесплатно			
Origin 8.1 Sr2	договор №13918/M41 от 24.09.2009 с ЗАО «СофтЛайн Трейд»			
Python 3.1 pygame-1.9.1	бесплатно			
Python 3.4 numpy-1.9.2	бесплатно			
Python 3.4.3	бесплатно			
Python 3.5.1 (Anaconda3 2.5.0 64-bit)	бесплатно			
WCF RIA Services V1.0 SP2	бесплатно			
WinDjView 2.1	бесплатно			
R Studio	бесплатно			
Anaconda3 2019.07 (Python 3.7.3 64-bit)	бесплатно			

3) Современные профессиональные базы данных и информационные справочные системы

- 1. **36C «ZNANIUM.COM» www.znanium.com**;
- 2. ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/;
- 3. ЭБС «Лань» http://e.lanbook.com;
- 4. Электронно-библиотечная система IPRbooks: http://www.iprbookshop.ru
- 4) Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
 - 1. Научная библиотека ТвГУ http://library.tversu.ru

VI. Методические материалы для обучающихся по освоению дисциплины

Темы расчетно-графических работ

Задание 1. Темы – «Интерполяция», «Численное дифференцирование и интегрирование»

- 1. Кусочно-линейная интерполяция.
- 2. Интерполяционная формула Лагранжа.
- 3. Интерполяционная формула Ньютона для неравноотстоящих значений аргумента
- 4. Первая интерполяционная формула Ньютона для равноотстоящих значений аргумента.
- 5. Вторая интерполяционная формула Ньютона для равноотстоящих значений аргумента.
- 6. Первая интерполяционная формула Гаусса.
- 7. Вторая интерполяционная формула Гаусса.
- 8. Обратная интерполяция.
- 9. Численное дифференцирование.
- 10. Численное интегрирование по формуле прямоугольников.
- 11. Численное интегрирование по формуле трапеций.
- 12. Численное интегрирование по формуле Симпсона.
- 13. Численное интегрирование по формуле 3/8.
- 14. Численное интегрирование по формуле Гаусса.
- 15. Численное интегрирование по формуле Мелера.
- 16. Вычисление интегралов вида $\int_{-\infty}^{+\infty} e^{-x^2} f(x) dx$ по обобщенной формуле Гаусса.
- 17. Вычисление интегралов вида $\int_0^{+\infty} e^{-x} f(x) dx$ по обобщенной формуле Гаусса.

<u>Задание 2.</u> Тема - «Решение систем линейных алгебраических уравнений (прямые методы)».

1. Решение системы линейных алгебраических уравнений методом Гаусса с выбором главного элемента по строке.

- 2. Решение системы линейных алгебраических уравнений методом Гаусса с выбором главного элемента по столбцу.
- 3. Решение системы линейных алгебраических уравнений методом Гаусса с выбором главного элемента по всей матрице.
- 4. Решение системы линейных алгебраических уравнений методом квадратного корня.
- 5. Решение системы линейных алгебраических уравнений методом ортогонализации.
- 6. Решение системы линейных алгебраических уравнений методом прогонки.
- 7. Нахождение определителя методом Гаусса.
- 8. Нахождение определителя методом квадратного корня.
- 9. Нахождение обратной матрицы методом Гаусса.
- 10. Нахождение обратной матрицы методом квадратного корня.

Задание 3. Темы – «Решение систем линейных алгебраических уравнений (итерационные методы)», «Решение нелинейных алгебраических уравнений и систем», «Решение проблемы собственных значений», «Сплайн-интерполирование», «Приближение функций».

- 1. Решение системы линейных алгебраических уравнений методом Якоби.
- 2. Решение системы линейных алгебраических уравнений методом Зейделя.
- 3. Решение системы линейных алгебраических уравнений методом простой итерации.
- 4. Решение системы линейных алгебраических уравнений методом минимальных невязок.
- 5. Решение системы линейных алгебраических уравнений методом скорейшего спуска.
- 6. Решение нелинейного алгебраического уравнения методом половинного деления.
- 7. Решение нелинейного алгебраического уравнения методом хорд.
- 8. Решение нелинейного алгебраического уравнения методом касательных.
- 9. Решение нелинейного алгебраического уравнения методом итерации.
- 10. Решение системы нелинейных алгебраических уравнений методом итерации.
- 11. Решение системы нелинейных алгебраических уравнений методом Ньютона.
- 12. Нахождение наибольшего по модулю собственного числа методом итерации.
- 13. Нахождение наибольшего по модулю собственного числа методом возведения матрицы в степень.
- 14. Нахождение второго по модулю собственного числа методом λ-разности.
- 15. Нахождение второго по модулю собственного числа методом исчерпывания.
- 16. Решение полной проблемы собственных чисел симметричной матрицы методом вращений.
- 17. Построение кубического интерполяционного сплайна.
- 18. Наилучшее среднеквадратичное приближение функций многочленами.
- 19. Наилучшее среднеквадратичное приближение функций тригонометрическими функциями.

<u>Задание 4.</u> Тема – «Численные методы решения задачи Коши и краевых задач для обыкновенных дифференциальных уравнений и систем».

- 1. Решение задачи Коши для дифференциального уравнения методом Эйлера.
- 2. Решение задачи Коши для дифференциального уравнения модифицированным методом Эйлера.
- 3. Решение задачи Коши для дифференциального уравнения методом Рунге-Кутты.
- 4. Решение задачи Коши для дифференциального уравнения экстраполяционным методом Адамса.
- 5. Решение задачи Коши для дифференциального уравнения интерполяционным методом Аламса
- 6. Решение задачи Коши для системы дифференциальных уравнений методом Эйлера.
- 7. Решение задачи Коши для системы дифференциальных уравнений модифицированным методом Эйлера.
- 8. Решение задачи Коши для системы дифференциальных уравнений методом Рунге-Кутты.

- 9. Решение задачи Коши для системы дифференциальных уравнений экстраполяционным методом Адамса.
- 10. Решение задачи Коши для системы дифференциальных уравнений интерполяционным методом Адамса.
- 11. Решение краевой задачи для дифференциальных уравнений второго порядка методом сеток.
- 12. Решение краевой задачи для дифференциальных уравнений второго порядка методом наименьших квадратов.
- 13. Решение краевой задачи для дифференциальных уравнений второго порядка методом моментов.

Задания для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины

Задача 1.

С какой абсолютной погрешностью может быть вычислен дискриминант квадратного уравнения $ax^2 + bx + c = 0$, если относительные погрешности коэффициентов a, b и c этого уравнения не превышают δ , а сами коэффициенты по модулю не превышают M?

Задача 2. Функция задана таблично:

X	-0.5	-0.1	0.2	0.3
у	0.8	0.6	0.5	0.1

Используя формулу Ньютона, вычислить значение интерполяционного многочлена в точке x=0.1.

Задача 3. Функция задана таблично:

X	2.5	2.9	3.0
у	-0.6	1.1	1.9

Вычислить приближенное значение производной этой функции в точке x=2.8, заменив функцию ее интерполяционным многочленом, построенным по формуле Ньютона.

Задача 4.

Найти приближенное значение интеграла $\int_{1}^{2} \frac{dx}{1+x^2}$ по формуле трапеций сначала с шагом h=0.5, а затем с шагом h=0.25. Оценить погрешность по правилу Рунге.

Задача 5.

Решить систему линейных алгебраических уравнений Ax=f методом Гаусса с выбором главного элемента по всей матрице и найти $\det A$.

$$A = \begin{bmatrix} -1 & 2 & 2 \\ 1 & -4 & 2 \\ -2 & 0 & 2 \end{bmatrix}, f = \begin{bmatrix} -11 \\ 9 \\ -6 \end{bmatrix}.$$

Задача 6.

Решить уравнение $x + x^3 = 20$ на отрезке [2;3] методом половинного деления с точностью до 0.05.

Задача 7.

Решить систему методом Ньютона:

$$\begin{cases} x^3 + y^3 = 8 \\ y = x^2 + 1 \end{cases}$$

Выбрать в качестве начального приближения $x_0=1,\ y_0=2$. Выполнить 2 шага метода.

Задача 8.

Методом Рунге-Кутты 4-го порядка аппроксимации решить задачу Коши y' = xy + 1, y(1) = 2 на [1;1.25] с шагом 0.25.

Задачи для самостоятельного решения

Наименование разделов и тем	Содержание самостоятельной работы.
Теория погрешностей	[5] Глава І. §1, задачи 1,2,4. §2, задача 1. §3, задачи 1,2,3,5,7. §5, задачи 1,4,5,6,7.
Интерполирование и приближение функций.	[5] Глава V. §4. Задачи 1а,б, 2а,в,г,4. §2. Задачи 1а,б, д, 2а,б,в,4. §3. Задачи 1а,в, и, 2а,б,к.
Численное дифференцирование и интегрирование.	[5] Глава VI. §1. Задачи 1а,б,в. Глава VII. §1. Задачи 1,2,3. §3. Задача 1. §5. Задача 2. §6. Задача 4.
Прямые методы решения систем линейных алгебраических уравнений	[5] Глава III. §3. Задачи 1,2.§4. Задачи 1,2. §6. Задачи 1,2.§7. Задача 1. §8. Задача 5.

Итерационные методы решения систем линейных уравнений	[5] Глава III. §9. Задачи 1,4. §10. Задачи 1,4.
Методы отыскания решений нелинейных уравнений и систем	[9] Глава 4. Задачи 1,2,31,46, 48.Глава 5. Задачи 10,11.
Методы решения проблемы собственных значений	[9] Глава 3. Задачи 15, 16.
Интерполирование и приближение функций (продолжение)	[2] Задачи 10.2, 10.3, 10.4, 11.2, 11.3.
Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений	
и систем Численные методы решения краевых задач для	§8. Задачи 1а,б. [5] Глава IX. §3. Задачи 16,в.
обыкновенных дифференциальных уравнений.	§5. Задачи 1a,б,2a,б.

2. Промежуточная аттестация

Список вопросов к зачету

- 1.1. Понятие погрешности. Виды погрешности.
- 1.2. Прямая задача теории погрешностей.
- 1.3. Погрешности арифметических действий с приближенными величинами и элементарных функций.
- 1.4. Обратная задача теории погрешностей.
- 1.5. Погрешности при представлении чисел в ЭВМ.
- 2.1. Понятие интерполяции. Кусочно-линейная интерполяция. Формула Лагранжа.
- 2.2. Погрешность интерполяции полиномами.
- 2.3. Разделенные разности и их свойства.
- 2.4. Интерполяционная формула Ньютона.
- 2.5. Интерполяция с равноотстоящими узлами. Конечные разности и их свойства.
- 2.6. Первая интерполяционная формула Ньютона для равноотстоящих узлов.
- 2.7. Вторая интерполяционная формула Ньютона для равноотстоящих узлов.
- 2.8. Первая интерполяционная формула Гаусса.

- 2.9. Вторая интерполяционная формула Гаусса.
- 2.10. Сходимость интерполяционного процесса.
- 2.11. Влияние погрешности исходных данных на погрешность интерполяции.
- 2.12. Задача о наилучшем выборе узлов интерполяции.
- 2.13. Многочлены Чебышева, их свойства.
- 2.14. Обратная интерполяция.
- 3.1. Понятие о численном дифференцировании. Общий подход.
- 3.2. Погрешность численного дифференцирования в общем случае.
- 3.3. Погрешность численного дифференцирования в узлах.
- 3.4. Левая, правая и центральная разностные производные. Их погрешности.
- 3.5. Влияние погрешности исходных данных на погрешность численного дифференцирования.
- 3.6. Понятие о численном интегрировании. Формулы Ньютона-Котеса.
- 3.7. Свойства коэффициентов Котеса (с доказательством).
- 3.8. Доказательство утверждения о том, что формулы Ньютона-Котеса при четных п точны для многочленов степени n+1.
- 3.9. Формула прямоугольников, ее погрешность.
- 3.10. Формула трапеций, ее погрешность.
- 3.11. Формула Симпсона, ее погрешность.
- 3.12. Формула 3/8, ее погрешность.
- 3.13. Правило Рунге оценки погрешности численного интегрирования.
- 3.14. Влияние погрешности исходных данных на погрешность численного интегрирования.
- 3.15. Квадратурная формула Гаусса, ее погрешность.
- 3.16. Обобщенные квадратурные формулы Гаусса, их погрешность.
- 3.17. Методы вычисления несобственных интегралов.
- 4.1. Влияние погрешности вектора правой части и матрицы системы на погрешность решения СЛАУ. Понятие о мере обусловленности.

- 4.2. Метод Гаусса решения СЛАУ
- 4.3. Расчет числа арифметических операций при решении СЛАУ методом Гаусса.
- 4.4. Теорема об LU-разложении.
- 4.5. Модификации метода Гаусса с выбором главного элемента.
- 4.6. Вычисление определителей и нахождение обратных матриц методом Гаусса.
- 4.7. Метод квадратного корня.
- 4.8. Метод прогонки.
- 4.9. Решение СЛАУ методом ортогонализации.

Вопросы, ответы на которые нужно знать на память.

- 1.1. Определение предельной абсолютной погрешности.
- 1.2. Определение предельной относительной погрешности.
- 1.3. Формулировка прямой задачи теории погрешностей.
- 1.4. Формулировка обратной задачи теории погрешностей.
- 1.5. Вычисление погрешности функции по заданным погрешностям ее аргументов.
- 1.6. Абсолютная погрешность суммы и разности.
- 1.7. Относительная погрешность произведения и частного.
- 1.8. Определение машинного эпсилон.
- 1.9. Определения машинной бесконечности и машинного нуля.
- 2.1. Определение интерполирующей функции.
- 2.2. Интерполяционная формула Лагранжа.
- 2.3. Определение разделенных разностей произвольного порядка.
- 2.4. Интерполяционная формула Ньютона (для неравноотстоящих значений аргумента).
- 2.5. Определение конечных разностей произвольного порядка.
- 2.6. Кусочно-линейная интерполяция.
- 3.1. Определение численного дифференцирования.
- 3.2. Левая, правая и центральная разностные производные.

- 3.3. Вторая разностная производная.
- 3.4. Каким степеням шага пропорциональны погрешности усечения для левой, правой и центральной разностной производной?
- 3.5. Каким степеням шага пропорциональны погрешности, вызванные неточностью исходных данных, для левой, правой и центральной разностной производной?
- 3.6. Определение численного интегрирования.
- 3.7. Формула прямоугольников.
- 3.8. Обобщенная формула трапеций.
- 3.9. Какими степеням шага пропорциональны погрешности формул прямоугольников, трапеций, Симпсона?
- 3.9. Общий вид формулы Гаусса для численного интегрирования.
- 3.10. Формула для оценки погрешности численного интегрирования по правилу Рунге.
- 4.1. Определение меры обусловленности матрицы.
- 4.2. Выражение погрешности решения СЛАУ через погрешность вектора правой части, когда матрица системы задана точно.
- 4.3. Какой степени п пропорционально количество арифметических операций при решении системы п линейных уравнений методом Гаусса при больших n?
- 4.4. Зачем нужны перестановки в методе Гаусса?
- 4.5. Чем отличается метод Гаусса с выбором главного элемента по строке от метода Гаусса без выбора главного элемента?
- 4.6. Чем отличается метод Гаусса с выбором главного элемента по столбцу от метода Гаусса без выбора главного элемента?
- 4.7. Чем отличается метод Гаусса с выбором главного элемента по всей матрице от метода Гаусса без выбора главного элемента?
- 4.8. В каком виде представляется матрица системы линейных уравнений при применении метода квадратного корня?

- 4.9. В чем преимущество метода квадратного корня перед методом Гаусса? Как это преимущество выражается количественно?
- 4.10. Для решения систем какого вида применяется метод прогонки?
- 4.11. Какой степени п пропорционально количество арифметических операций при решении системы п линейных уравнений методом прогонки при больших n?

Вопросы к экзамену.

- 1.1. Метод итерации решения СЛАУ. Теорема о сходимости метода.
- 1.2. Решение систем линейных алгебраических уравнений методом Якоби. Достаточные условия сходимости.
- 1.3. Решение систем линейных алгебраических уравнений методом Зейделя. Достаточные условия сходимости.
- 1.4. Решение систем линейных алгебраических уравнений методом итерации с параметром. Достаточное условие сходимости.
- 1.5. Решение систем линейных алгебраических уравнений методом минимальных невязок.
- 1.6. Решение систем линейных алгебраических уравнений методом наискорейшего спуска.
- 2.1. Общие сведения о корнях уравнений и методах их нахождения. Отделение вещественных корней многочленов.
- 2.2. Метод половинного деления. Теорема о сходимости (с доказательством).
- 2.3. Метод хорд. Теорема о сходимости [с доказательством для случая f'(x)>0, f(a)>0].
- 2.4. Решение нелинейного уравнения методом касательных (Ньютона). Модификация метода. Теорема о сходимости [с доказательством для случая f"(x)>0].
- 2.5. Решение нелинейного уравнения комбинированным методом хорд и касательных.

- 2.6. Метод итерации для одного нелинейного уравнения. Теорема о сходимости (с доказательством).
- 2.7. Метод итерации для системы нелинейных уравнений. Теорема о сходимости.
- 2.8. Решение систем нелинейных уравнений методом Ньютона и модифицированным методом Ньютона.
- 2.9. Сведение задачи о решении систем нелинейных уравнений к задаче оптимизации.
- 3.1. Нахождение наибольшего по модулю собственного числа и соответствующего собственного вектора матрицы итерационным методом.
- 3.2. Нахождение наибольшего по модулю собственного числа и соответствующего собственного вектора матрицы методом скалярных произведений.
- 3.3. Метод лямбда-разности.
- 3.4. Метод исчерпывания.
- 3.5. Нахождение собственных чисел и векторов методом вращений.
- 4.1. Приближение функций. Равномерное и среднеквадратичное приближение. Определитель Грама системы функций.
- 4.2. Общие сведения о сплайнах и их построении.
- 4.3. Кубические сплайны и их построение.
- 5.1. Основные понятия теории разностных схем (сетка, аппроксимация, сходимость). Численное решение задачи Коши методом Эйлера и модифицированным методом Эйлера.
- 5.2. Теорема о сходимости метода Эйлера (с доказательством).
- 5.3. Метод Рунге-Кутты. Определение коэффициентов метода (на примере двухэтапного метода). Наиболее употребительные варианты метода третьего и четвертого порядка.
- 5.4. Правило Рунге оценки погрешности численного решения задачи Коши.
- 5.5. Экстраполяционный метод Адамса.

- 5.6. Интерполяционный метод Адамса.
- 5.7 Метод сеток решения краевых задач для линейных дифференциальных уравнений (на примере уравнений второго порядка).
- 5.8. Метод наименьших квадратов решения краевых задач для линейных дифференциальных уравнений.
- 5.9. Метод моментов решения краевых задач для линейных дифференциальных уравнений. Метод Бубнова-Галеркина.
- 5.10. Выбор координатных функций в методах наименьших квадратов и моментов для различных видов граничных условий. Требования к этим функциям.

Вопросы, ответы на которые нужно знать на память.

- 1. Расчетная формула метода простой итерации решения СЛАУ.
- 2. Расчетная формула метода Зейделя решения СЛАУ.
- 3. Определение вектора невязки системы линейных алгебраических уравнений.
- 4. Алгоритм метода половинного деления.
- 5. Расчетная формула метода касательных (Ньютона).
- 6. Расчетная формула метода итерации для одного нелинейного уравнения.
- 7. Какая величина минимизируется при сведении задачи о решении систем нелинейных уравнений к задаче оптимизации?
- 8. По какой формуле находится наибольшее по модулю собственное число матрицы при применении итерационного метода?
- 9. По какой формуле находится наибольшее по модулю собственное число матрицы при применении метода скалярных произведений?
- 10. Зачем нужно нормирование при нахождении наибольшего по модулю собственного числа итерационным методом?
- 11. Какая величина минимизируется при среднеквадратичном приближении функций, заданных таблично?
- 12. Какая величина минимизируется при нахождении наилучшего равномерного приближения функций, заданных таблично?
- 13. Определение интерполяционного сплайна произвольной степени.

- 14. Расчетная формула явного метода Эйлера решения задачи Коши.
- 15. По заданной разностной схеме определить, является ли соответствующий метод решения задачи Коши явным или неявным, одношаговым или многошаговым.
- 16. Расчетная формула для оценки погрешности численного решения задачи Коши по правилу Рунге.
- 17. Конечно-разностная аппроксимация линейного дифференциального уравнения второго порядка при применении метода сеток.
- 18. Конечно-разностная аппроксимация краевых условий при применении метода сеток в случае, когда на концах отрезка заданы значения искомой функции.
- 19. Конечно-разностная аппроксимация краевых условий при применении метода сеток в случае, когда на концах отрезка заданы значения производной искомой функции.
- 20. Представление решения краевой задачи при применении методов наименьших квадратов и моментов.

Расчет рейтинга в 5-м семестре Расчет баллов за семестр в целом

- 1. Посещение лекций 14 баллов (по 1 баллу за занятие)
- 2. Посещение практических занятий 16 баллов (по 2 балла за занятие).
- 3. Решение задач у доски на практических занятиях 12 баллов (по 3 балла за задачу, решенную у доски, но не более 6 баллов за каждый модуль).
- 4. Контрольные работы -20 баллов (2 контрольные работы).
- 5. Своевременная сдача расчетного задания на ЭВМ (РГР):
 - не позже 1 декабря 10 баллов;
 - не позже зачетной недели 6 баллов.
- 5. Собеседование по теоретическим вопросам $-\,28\,$ баллов.

Распределение баллов по модулям

<u>Модуль 1.</u> Темы – «Теория погрешностей», «Интерполяция», «Численное дифференцирование».

- 1. Посещение лекций 6 баллов;
- 2. Посещение практических занятий 8 баллов;
- 3. Решение задач на практических занятиях 6 баллов;
- 4. Контрольная работа 10 баллов.

Всего 30 баллов.

<u>Модуль 2.</u> Темы – «Численное интегрирование», «Решение систем линейных алгебраических уравнений».

- 1. Посещение лекций 8 баллов;
- 2. Посещение практических занятий 8 баллов;
- 3. Решение задач на практических занятиях 6 баллов;
- 4. Контрольная работа 10 баллов;
- 5. Сдача расчетного задания на ЭВМ (РГР) 10 баллов.
- 6. Собеседование по теоретическим вопросам 28 баллов.

Всего 70 баллов.

Примечание. Для получения зачета необходимо сдать расчетное задание на ЭВМ.

Расчет рейтинга в 6-м семестре

Расчет баллов за семестр в целом

- 1. Посещение практических занятий 8 баллов (по 1 баллу за занятие);
- 2. Посещение лекций 8 баллов (по 1 баллу за лекцию раз в 2 недели);
- 3. Решение задач у доски на практических занятиях 12 баллов (по 2 балла за задачу, решенную у доски, но не более 6 баллов за каждый модуль);
- 4. Контрольные работы 16 баллов (2 контрольных работы, по 2 задания в каждой, по 4 балла за каждое задание).

- 5. Своевременная сдача расчетных заданий на ЭВМ 16 баллов:
 - сдача первого задания в течение первого модуля 6 баллов,
 - сдача первого задания не позже 15 мая 4 балла,
 - сдача первого задания до окончания зачетной недели 2 балла;
 - сдача второго задания не позже 15 мая 5 баллов,
 - сдача второго задания до окончания зачетной недели 3 балла;
 - сдача третьего задания до окончания зачетной недели 5 баллов.

Распределение баллов по модулям

<u>Модуль 1.</u> Тема – «Методы решения систем линейных алгебраических уравнений», «Методы решения нелинейных алгебраических уравнений и систем».

- 1. Посещение практических занятий 4 балла;
- 2. Посещение лекций 4 балла;
- 3. Решение задач на практических занятиях 6 баллов;
- 4. Контрольная работа 8 баллов.
- 5. Сдача первого расчетного задания на ЭВМ 6 баллов.

Всего 28 баллов.

Модуль 2. Темы — «Методы решения проблемы собственных значений», «Сплайн-интерполирование», «Приближение функций», «Численное решение задачи Коши для обыкновенных дифференциальных уравнений», «Численное решение краевых задач для обыкновенных дифференциальных уравнений».

- 1. Посещение практических занятий 4 балла;
- 2. Посещение лекций 4 балла;
- 3. Решение задач на практических занятиях 6 баллов;
- 4. Контрольная работа 8 баллов,
- Сдача второго и третьего расчетных заданий на ЭВМ 10 баллов.
 Всего 32 балла.

Примечание. Для получения положительной оценки на экзамене необходимо сдать не менее двух расчетных заданий на ЭВМ не позднее, чем в день консультации.

VII. Материально-техническое обеспечение

Для аудиторной работы.

Набор учебной мебели
Набор учебной мебели,
экран,
проектор.

Для самостоятельной работы

для самостоятельной раос	лы.
Помещение для	Компьютер,
самостоятельной работы	экран,
обучающихся:	проектор,
Компьютерный класс	кондиционер.
факультета ПМиК	
№ 46	
170002, Тверская обл.,	
г.Тверь, Садовый	
переулок, д.35	

VIII. Сведения об обновлении рабочей программы дисциплины

№п.п.	Обновленный раздел	Описание внесенных	Реквизиты документа,	
	рабочей программы	изменений	утвердившего	
	дисциплины		изменения	
1.	3. Объем дисциплины	Выделение часов на	От 29.10.2020 года,	
		практическую	протокол № 3 ученого	
		подготовку	совета факультета	
2.	II. Содержание дисциплины,	Выделение часов на	От 29.10.2020 года,	
	структурированное по темам	практическую	протокол № 3 ученого	
	(разделам) с указанием	подготовку по темам	совета факультета	
	отведенного на них количества			
	академических часов и видов			
	учебных занятий			

3.	V. Учебно-методическое и	Внесены изменения в	От 29.09.2022 года,
	информационное	программное	протокол № 2 ученого
	обеспечение дисциплины	обеспечение	совета факультета
	2) Программное обеспечение		
4.	VII. Материально-	Внесены изменения в	От 29.09.2022 года,
	техническое обеспечение	материально-	протокол № 2 ученого
		техническое	совета факультета
		обеспечение	
		аудиторий	
5.	V. Учебно-методическое и	Внесены изменения в	От 24.08.2023 года,
	информационное	программное	протокол № 1 ученого
	обеспечение, необходимое	обеспечение	совета факультета
	для проведения практики		
	2) Программное обеспечение		