Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Министерство науки и высшего образования Российской Федерации

Должность: врио ректора

Дата подписания: 10.08.2023 16:35 ФТБОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Б.Б.Педько

кнои

2022 г.

Рабочая программа дисциплины (с аннотацией)

Физическая электроника

Направление подготовки 03.03.03 Радиофизика

профиль

Физика и технология материалов и устройств радиоэлектроники

Для студентов 4 курса, очной формы обучения

Составитель: к.ф.-м.н. Третьяков С.А.

I. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины является изучение основ электроники твердого тела, электроники поверхностей и пленок, физики генерации и управления сигналами, эмиссионной и вакуумной электроники.

Задачами дисциплины является приобретение фундаментальных знаний теории и практики физической электроники и получение возможности их применения для научно-технических приложений в радиофизике и электронике.

2. Место дисциплины в структуре ООП

Дисциплина «Физическая электроника» изучается в модуле «Физика и технология радиоэлектронных устройств» Блока 1. Дисциплины части учебного плана, формируемой участниками образовательных отношений.

Для успешного освоения данной дисциплины необходимы знания, полученные в рамках общего курса физики, курсов теоретической механики, электродинамики, квантовой механики, физики твердого тела и оптики полупроводников, диэлектриков, металлов, а также математических дисциплин — линейной алгебры, анализа, теории функций комплексного переменного

3. Объем дисциплины: <u>4</u> зачетные единицы, <u>144</u> академических часа, **в** том числе:

контактная аудиторная работа: лекции <u>30</u> часов, практические занятия <u>30</u> часов;

самостоятельная работа: 84 часа, в том числе контроль 27 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения	Планируемые результаты обучения по дисциплине
образовательной программы	
(формируемые компетенции)	
ПК-3. Способен осуществлять разработку	ПК-3.1. Осуществляет анализ радиоматериалов и
радиоэлектронных средств.	материалов для создания несущих конструкций

				радиоэлектронных средств.	
ПК-4.	Способен	проводить	научно-	ПК-4.1. Осуществляет сбор, обработку, анализ и	
исследо	овательские	И	опытно-	обобщение передового отечественного и	
констр	укторские	разработки	по по	международного опыта в соответствующей	
отдельным разделам темы.			области исследований.		

5. Форма промежуточной аттестации и семестр прохождения

Экзамен в 7 семестре.

6. Язык преподавания: русский.

II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий.

1.Для студентов очной формы обучения

Учебная программа – наименование разделов и тем	Всего (час.)	Контактная работа (час.) Лекции Практические		Самостоя тельная работа, в том числе Контроль (час.)		
				заня	ятия	
		всего	в т.ч. ПП	всего	в т.ч. ПП	
1. Основы электроники твердого тела 1. Динамика носителей заряда. 2. Спектр электрона в кристалле. 3. Нульмерные (точечные) дефекты в кристаллах. 4. Аморфные твердые тела. 5. Статистика носителей заряда. 6. Перенос заряда в твердом теле. 7. Неравновесные носители заряда. 8. Граничные и контактные дефекты. Переходы.	28	7		7		14
 Основы электроники поверхностей и пленок. Энергетические характеристики поверхностей. Микроминиатюризация приборов. Пленочные структуры. Перенос в пленках. Прохождение тока в диэлектрических структурах. Пленочные элементы. 	28	7		7		14

7. Методы исследования поверхностей				
и тонких структур.				
8. Спектроскопия.				
9. Микроскопия. Рентгеновские методы				
3. Основы эмиссионной и вакуумной	30	8	8	14
электроники.				
1. Динамика заряженных частиц.				
2. Электронные взаимодействия в				
твердых телах				
3. Атомные и ионные взаимодействия.				
4. Корпускулярные пучки большой				
мощности.				
5. Другие виды излучений.				
6. Приборы и устройства на				
вынужденном излучении потоков				
частиц.				
7. Релятивистские эффекты и				
нелинейные механизмы.	21	0	0	1.5
4. Основы физики генерации и	31	8	8	15
управления сигналами. 1. Лазеры.				
2. Оптические резонаторы.				
3. Режимы работы лазерных устройств.				
4. Молекулярные генераторы.				
5. Взаимодействия электромагнитных				
полей и пространственных зарядов.				
6. Принципы действия				
полупроводниковых приборов.				
7. Взаимодействия акустических полей				
и пространственных зарядов.				
Акустические дефекты.				
Электрооптический и магнито-				
оптический эффекты.				
экзамен	27			27
ИТОГО	144	30	30	84

III. Образовательные технологии

Учебная программах- наименование	Вид занятия	Образовательные технологии
разделов и тем		
1. Основы электроники твердого тела	Лекции,	Активное слушание.
1. Динамика носителей заряда.	практические	Групповое решение задач.
2. Спектр электрона в кристалле.	занятия	Решение индивидуальных
3. Нульмерные (точечные) дефекты в		задач
кристаллах.		Мозговой штурм
4. Аморфные твердые тела.		дискуссия
5. Статистика носителей заряда.		
6. Перенос заряда в твердом теле.		
7. Неравновесные носители заряда.		
8. Граничные и контактные дефекты.		
Переходы.		

2. Основы электроники поверхностей	Лекции,	Активное слушание.
и пленок.	практические	Групповое решение задач.
1.Энергетические характеристики по-	занятия	Решение индивидуальных
верхностей.		задач
2. Микроминиатюризация приборов.		Мозговой штурм
3. Пленочные структуры.		дискуссия
4. Перенос в пленках.		
5. Прохождение тока в диэлек-		
трических структурах.		
6. Пленочные элементы.		
7. Методы исследования поверхностей		
и тонких структур.		
8. Спектроскопия.		
9. Микроскопия. Рентгеновские методы		
3. Основы эмиссионной и вакуумной	Лекции,	Активное слушание.
электроники.	практические	Групповое решение задач.
1. Динамика заряженных частиц.	занятия	Решение индивидуальных
2. Электронные взаимодействия в		задач
твердых телах		Мозговой штурм
3. Атомные и ионные взаимодействия.		дискуссия
4. Корпускулярные пучки большой		
мощности.		
5. Другие виды излучений.		
6. Приборы и устройства на		
вынужденном излучении потоков		
частиц.		
7. Релятивистские эффекты и		
нелинейные механизмы.	_	
4. Основы физики генерации и	Лекции,	Активное слушание.
управления сигналами.	практические	Групповое решение задач.
1. Лазеры.	занятия	Решение индивидуальных
2. Оптические резонаторы.		задач
3. Режимы работы лазерных устройств.		Мозговой штурм
4. Молекулярные генераторы.		дискуссия
5. Взаимодействия электромагнитных		
полей и пространственных зарядов.		
6. Принципы действия		
полупроводниковых приборов.		
7. Взаимодействия акустических полей		
и пространственных зарядов.		
Акустические дефекты.		
Электрооптический и магнито-		
оптический эффекты.		

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Форма проведения промежуточного контроля: студенты, освоившие программу курса «Распространение электромагнитных волн» могут сдать экзамен

по итогам рейтинговой аттестации согласно «Положения о рейтинговой системе обучения в ТвГУ» (протокол №8 от 30 апреля 2020 г.).

Если условия «Положения о рейтинговой системе ...» не выполнены, то экзамен сдается согласно «Положению о промежуточной аттестации (экзаменах и зачетах) обучающихся по программам высшего образования ТвГУ» (протокол №11 от 28 апреля 2021 г.)

Для проведения текущей и промежуточной аттестации:

ПК-3. Способен осуществлять разработку радиоэлектронных средств:

ПК-3.1. Осуществляет анализ радиоматериалов и материалов для создания несущих конструкций радиоэлектронных средств.

Задание:

- 1. Какие взаимодействия учитывает классическая электронная теория металлов.
 - 2. Как влияет эффект Шоттки на работу выхода электрона из твёрдого тела Способ аттестации: устный

Критерии оценки:

Дан правильный развернутый ответ с обоснование – 2 балла Дан правильный развернутый ответ без обоснования – 1 балл Дан неправильный ответ – 0 баллов

ПК-4. Способен проводить научно-исследовательские и опытно-конструкторские разработки по отдельным разделам темы:

ПК-4.1. Осуществляет сбор, обработку, анализ и обобщение передового отечественного и международного опыта в соответствующей области исследований.

Задание:

некоторого транзистора типа задано: p-n-p $I_{p \ni} = 1$ мА; $I_{n \ni} = 0.01$ мА; $I_{p K} = 0.98$ мА; $I_{n K} = 0.001$ мА. Вычислите: a) статический коэффициент передачи базы; тока б) эффективность эмиттера, или коэффициент инжекции;

- B) коэффициент передачи тока в схемах ОБ и ΟЭ;
- L) значения токов $I_{K\ni O};$ u
- д) значение β и $I_{\mathcal{B}}$, если I_{pK} = 0,99 мА и $I_{n\ni}$ =0,005 мА.
- 2. Кремниевый транзистор типа n-p-n комнатной температуре имеет концентрацию примесей в базе $1.3 \cdot 10^{23} \text{M}^{-3}$ и в коллекторе $1.3 \cdot 10^{24} \text{M}^{-3}$. при $U_{K\!S}=0$ составляет активной области базы а) Покажите, что при $U_{KE} = 3.6B$ толщина активной области базы изменяется на
- 10%. Положите, что $n_i = 10^{16} M^{-3}$.
- б) Вычислите барьерную ёмкость перехода база-коллектор, если площадь перехода $10^{-8} M^2$ и напряжение $U_{KE} = 0$.

Способ аттестации: письменный

Критерии оценки:

- а) 4 балла Полностью и правильно с обоснованием решенная задача
- б) 3 балла Решение с правильным обоснованием, наличием математических выкладок и указанным правильным ходом рассуждений, но не доведенное до правильного численного результата
- в) 2 балла Наличие правильного обоснования, выполнен выбор приближений, правльно записаны необходимые для решения математические утверждения, но не хватает одного из необходимых логических шагов

V. Учебно-методическое и информационное обеспечение дисциплины

- 1) Рекомендуемая литература
- а) основная литература:
- 1. Физика твердого тела [Электронный ресурс] : учебное пособие / А.А. Корнилович [и др.]. — Электрон. текстовые данные. — Новосибирск: Новосибирский государственный технический университет, 2012. — 71 с. 978-5-7782-2160-4. Режим доступа: http://www.iprbookshop.ru/45187.html
 - б) дополнительная литература:
- 2. Шевченко О.Ю. Основы физики твердого тела [Электронный ресурс] : учебное пособие / О.Ю. Шевченко. — Электрон. текстовые данные. — СПб.

- : Университет ИТМО, 2010. 77 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/67512.html
- 2) Программное обеспечение
- а) Лицензионное программное обеспечение
- б) Свободно распространяемое программное обеспечение
- 3) Современные профессиональные базы данных и информационные справочные системы
- 1.96C«ZNANIUM.COM» www.znanium.com;
- 2.ЭБС «Университетская библиотека онлайн»https://biblioclub.ru/;
- 3.ЭБС «Лань» http://e.lanbook.com
- 4) Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

VI. Методические материалы для обучающихся по освоению дисциплины

План практических занятий

- 1. Основы электроники твердого тела
- 2. Основы электроники поверхностей и пленок.
- 3. Основы эмиссионной и вакуумной электроники.
- 4. Основы физики генерации и управления сигналами.

Методические рекомендации

Предметом оценки является подготовка студентов к занятиям, работа студентов на практических и лабораторных занятиях, выполнение ими тестовых заданий.

Оценки успеваемости студентов проходит в модульную неделю в соответствии с графиков учебного процесса.

Практические задания по демонстрации компетенций заключаются в устных или письменных ответах на поставленные преподавателем или составленным самими студентами вопросы (традиционные или в форме тестов).

При этом оценивается обоснованность ответа, ясность и последовательность изложения мысли. Такая демонстрация компетенций проверяет уровень владения теоретическим и практическим материалом.

Типовые тесты

- 1. Классическая электронная теория металлов
- учитывает взаимодействие электронов с ионными остовами
- учитывает взаимодействие электронов между собой
- не учитывает дополнительные поля, порождаемые другими электронами и ионами
 - 2. Классическая электронная теория металлов
 - даёт правильную оценку средней длины свободного пробега электронов
 - даёт правильную оценку электронной теплоёмкости металлов
 - даёт правильную интерпретацию законов Ома и Джоуля-Ленца
 - 3. Температура вырождения электронного газа в статистике Ферми-Дирака
 - близка к абсолютному нулю
 - близка к температурам плавления металлов
 - юольше температур плавления металлов
- 4. Согласно квантовой электронной теории металлов электроны подчиняются
 - статистике Бозе-Эйнштейна
 - статистике Ферми-Дирака
 - -статистике Максвелла-Больцмана
 - 5. Эффект Шоттки
 - не влияет на работу выхода электрона из твёрдого тела
 - уменьшает работу выхода

- увеличивает работу выхода
- 6. Автоэлектронной эмиссией называют явление испускания электронов в вакуум с поверхности твёрдого тела
 - под действием внешнего магнитного поля
 - в результате нагрева тела до высоких температур
 - под действием внешнего электрического поля
 - 7. Высвобождение электрона из катода не требует затрат энергии
 - при автоэлектронной эмиссии
 - при термоэлектронной эмиссии
 - при фотоэлектронной эмиссии
 - при вторичной эмиссии

Итоговый контроль проводится в форме экзамена, который включает письменные или устные ответы на теоретические вопросы.

- 1. Динамика носителей заряда.
- 2. Спектр электрона в кристалле.
- 3. Статистика носителей заряда.
- 4. Энергетические характеристики поверхностей.
- 5. Микроминиатюризация приборов.
- 6. Пленочные структуры.
- 7. Перенос в пленках.
- 8. Прохождение тока в диэлектрических структурах.
- 9. Методы исследования поверхностей и тонких структур.
- 10. Электронная микроскопия.
- 11. Туннельная микроскопия.
- 12. Растровая электронная микроскопия
- 13. Динамика заряженных частиц.
- 14. Атомные и ионные взаимодействия.

- 15. Корпускулярные пучки большой мощности.
- 16. Приборы и устройства на вынужденном излучении потоков частиц.
- 17. Взаимодействия электромагнитных полей и пространственных зарядов.
- 18.Определение работы выхода электрона из оксидного катода
- 19. Термоэлектронная эмиссия металлов.
- 20. Самостоятельный разряд в газах.
- 21. Физика электронных усилительных и генераторных ламп.

VII. Материально-техническое обеспечение

	T	T 1
Учебная аудитория для	1 Экран настенный Screen	Microsoft Windows 10 Enterprise
проведения занятий	Media 153x203	MS Office 365 pro plus
лекционного типа, занятий	2. Комплект учебной мебели	Acrobat Reader DC - бесплатно
семинарского типа,	на 24 посадочных места	Google Chrome – бесплатно
курсового проектирования	3. Меловая доска	
(выполнения курсовых	4. Переносной ноутбук	
работ), групповых и	5. проектор EPSON EB-X05 с	
индивидуальных	потолочным креплением	
консультаций, текущего		
контроля и промежуточной		
аттестации		
Учебная аудитория № 28		
(170002 Тверская обл., г.		
Тверь, Садовый пер., д. 35)		
Учебно-научная лаборатория	1. Вольтметр цифровой	
радиоэлектроники № 25 А	B7-78/2	
(170002 Тверская обл., г.	2. Осциллограф	
Тверь, Садовый пер., д. 35)	цифровой WA 102 (2	
	шт.)	
	3. Hoyтбук DEII Ispiron 1300	
	(1.7 GHz) 15.4WXGA.	
	512MB. 80GB	
	4. Генератор сигналов РСС	
	10A	
	5. Источник питания PCS 64i	
	6. Муфельная печь МИМП-	
	3П	
	7. Осциллограф	
	двухканальный	
	PCS 500 A	
	8. Источник питания Б5-49	
	9. Источник питания Б5-50	
	10. Генератор Г3-33 2шт	
	11. Генератор Г3-109	
	12. Генератор Г4-109	
	13. Калибратор фазы Ф1-4	

14. Селективный
микровольтметр В6-9
15. Осциллограф С1-72 2шт
16. Осциллограф С-1-73

VIII. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел рабочей программы дисциплины	Описание внесенных изменений	Реквизиты документа, утвердившего изменения
1. 2.			