Документ подписан простой электронной подписью

Информация о владельце: ФИО: Смирнов Серго интистерство науки и высшего образования Российской Федерации

ФГБОУ ВО Тверской государственный университет Должность: врио ректора

Дата подписания: 07.11.2023 09:47:16 Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю: Руководитель ООП

Е.Р. Хохлова

«17» мая 2020 г.

Рабочая программа дисциплины (с аннотацией)

Физика

Направление подготовки 05.03.02 География

Направленность (профиль) Региональное развитие

Для студентов 1 курса очной формы обучения

Составитель: к.ф.-м.н. Е.М. Семёнова

І. Аннотация

1. Физика

2. Цель и задачи дисциплины

Целью освоения дисциплины является получение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира, наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы.

Задачей освоения дисциплины является формирование и развитие у обучающихся компетенции: способность использовать базовые знания фундаментальных разделов физики, химии, биологии, экологии в объеме, необходимом для освоения физических, химических, биологических, экологических основ в общей, физической и социально-экономической географии.

3.Место дисциплины (или модуля) в структуре ООП

Дисциплина входит в базовую часть модуля «общекультурный». Основной задачей является создание фундаментальной базы знаний по физике, которая в дальнейшем станет основой для изучения таких дисциплин как «Климатология с основами метеорологии», «Гидрология».

4. Объем дисциплины:

3 зачетных единиц, 108 академических часов, **в том числе контактная работа:** лекции 36 часов, практические занятия 18 часов, лабораторные работы 0 часов, **самостоятельная работа:** 54 часа.

5. Перечень планируемых результатов обучения по дисциплине (или модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения образовательной программы	Планируемые результаты обучени по дисциплине			
(формируемые компетенции) Способность использовать базовые знания фундаментальных разделов физики, химии, биологии, экологии в объеме, необходимом для освоения, физических, химических, биологических, экологических основ в общей, физической и социально-экономической географии (ОПК-2).	Владеть навыками и приемами решения физических задач. Уметь применять физические законы при рассмотрении естественно-научных задач. Знать фундаментальные физические законы и принципы, лежащие в основе современной физической картины мира.			

- 6. Форма промежуточной аттестации зачет
- 7. Язык преподавания русский.

П. Содержание дисциплины (или модуля), структурированное по темам(разделам) с указанием отведенного на них количества академических часови видов учебных занятий

1. Для студентов очной формы обучения

Учебная программа –		Контактная работа (час.)		ельная тас.)
наименование разделов и тем	Всего (час.)	Лекции	Практические занятия	Самостоятельная работа (час.)
Введение. Физика как наука. Материя, ее				
свойства и формы. Физические методы				
исследования. Эксперимент, гипотеза,	4	2		2
физический закон, физическая теория. Процесс		2		2
познания материи. Связь физики с				
естественными науками				
и техникой. Основные разделы общей физики.				
Основная задача кинематики. Физическая				
система отсчета. Радиус-вектор. Степень				
свободы. Кинематика материальной точки.	8	2	2	4
Уравнение движения. Траектория. Путь.				
Перемещение. Скорость. Ускорение. Частные				
случаи движения.				
Кинематика абсолютно твердого тела.				
Поступательное движение. Вращение вокруг				
неподвижной оси. Угловая скорость и ускорение.	6	2	1	3
Равномерное вращение. Период, частота.				
Равноускоренное вращение.				

Динамика материальной точки. Первый закон	6	2	1	3
Ньютона. Инерциальные и неинерциальные	0	2	1	3

закон сохранения массы. Импульс материальной точки и абсолютно твердого тела. Второй закон Ньютона. Третий закон Ньютона. Силы в механике. Фундаментальные взаимодействия. Упругие силы. Деформации. Упругие и пластические деформации. Типы простых деформаций. Закон Гука. Закон всемирного тяготения. Сила тяжести. Свободное падение. Вес тела. Силы трения и их виды. Роль трения в природе и технике. Законы сохранения в механике. Механическая система. Внешние и внутренние силы. Интегралы движения. Закон сохранения импульса. Закон сохранения момента импульса. Энергия и се основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета. Силы инерции и их особенности. Центробежная	системы отсчета. Сила. Масса, ее свойства и				
Ньютона. Третий закон Ньютона. Силы в механике. Фундаментальные взаимодействия. Упругие силы. Деформации. Упругие и пластические деформации. Типы простых деформаций. Закон Гука. Закон всемирного тяготения. Сила тяжести. Свободное падение. Вес тела. Силы трения и их виды. Роль трения в природе и технике. Законы сохранения в механике. Механическая система. Внешние и внутренние силы. Интегралы движения. Закон сохранения импульса. Закон сохранения момента импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета. 5 2 3	закон сохранения массы. Импульс материальной				
Силы в механике. Фундаментальные взаимодействия. Упрутие силы. Деформации. Упрутие и пластические деформации. Типы простых деформаций. Закон Гука. Закон всемирного 5 2 1 3 тяготения. Сила тяжести. Свободное падение. Вес тела. Силы трения и их виды. Роль трения в природе и технике. Законы сохранения в механике. Механическая система. Внешние и внутренние силы. Интегралы движения. Закон сохранения импульса. Закон сохранения импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета. 5 2 3 3	точки и абсолютно твердого тела. Второй закон				
ствия. Упругие силы. Деформации. Упругие и пластические деформации. Типы простых деформаций. Закон Гука. Закон всемирного 6 2 1 3 тяготения. Сила тяжести. Свободное падение. Вес тела. Силы трения и их виды. Роль трения в природе и технике. Законы сохранения в механике. Механическая система. Внешние и внутренние силы. Интегралы движения. Закон сохранения импульса. Закон сохранения импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела.	Ньютона. Третий закон Ньютона.				
пластические деформации. Типы простых деформаций. Закон Гука. Закон всемирного 6 2 1 3 тяготения. Сила тяжести. Свободное падение. Вес тела. Силы трения и их виды. Роль трения в природе и технике. Законы сохранения в механике. Механическая система. Внешние и внутренние силы. Интегралы движения. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения момента импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета. 5 2 3	Силы в механике. Фундаментальные взаимодей-				
деформаций. Закон Гука. Закон всемирного тятотения. Сила тяжести. Свободное падение. Вес тела. Силы трения и их виды. Роль трения в природе и технике. Законы сохранения в механике. Механическая система. Внешние и внутренние силы. Интегралы движения. Закон сохранения импульса. Закон сохранения импульса. Закон сохранения импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	ствия. Упругие силы. Деформации. Упругие и				
тяготения. Сила тяжести. Свободное падение. Вес тела. Силы трения и их виды. Роль трения в природе и технике. Законы сохранения в механике. Механическая система. Внешние и внутренние силы. Интегралы движения. Закон сохранения импульса. Закон сохранения импульса. Закон сохранения момента импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	пластические деформации. Типы простых				
Вес тела. Силы трения и их виды. Роль трения в природе и технике. Законы сохранения в механике. Механическая система. Внешние и внутренние силы. Интегралы движения. Закон сохранения импульса. Закон сохранения импульса. Закон сохранения импульса. Закон сохранения момента импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	деформаций. Закон Гука. Закон всемирного	6	2	1	3
природе и технике. Законы сохранения в механике. Механическая система. Внешние и внутренние силы. Интегралы движения. Закон сохранения импульса. Закон сохранения импульса. Закон сохранения момента импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	тяготения. Сила тяжести. Свободное падение.				
Законы сохранения в механике. Механическая система. Внешние и внутренние силы. Интегралы движения. Закон сохранения импульса. Закон сохранения момента импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	Вес тела. Силы трения и их виды. Роль трения в				
система. Внешние и внутренние силы. Интегралы движения. Закон сохранения импульса. Закон сохранения импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	природе и технике.				
движения. Закон сохранения импульса. Закон сохранения момента импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	Законы сохранения в механике. Механическая				
сохранения момента импульса. Энергия и ее основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	система. Внешние и внутренние силы. Интегралы				
основные формы. Работа силы. Мощность силы. Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета. 5 2 3	движения. Закон сохранения импульса. Закон				
Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	сохранения момента импульса. Энергия и ее				
Механическая энергия. Кинетическая энергия материальной точки и абсолютно твердого тела. Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета. 5 2 3	основные формы. Работа силы. Мощность силы.	7	2	1	4
Теорема о кинетической энергии. Потенциальная энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	Механическая энергия. Кинетическая энергия	/	2	1	4
энергия. Консервативные силы. Теорема о потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	материальной точки и абсолютно твердого тела.				
потенциальной энергии. Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	Теорема о кинетической энергии. Потенциальная				
Динамика абсолютно твердого тела. Уравнения движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета.	энергия. Консервативные силы. Теорема о				
движения. Момент инерции. Свободные оси вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета. 5 2 3	потенциальной энергии.				
вращения, главные оси и моменты инерции. Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета. 5 2 1 2 2 3	Динамика абсолютно твердого тела. Уравнения				
Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета. 5 2 1 2 Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела.	движения. Момент инерции. Свободные оси				
Теорема Штейнера. Кинетическая энергия для вращения и плоского движения абсолютно твердого тела. Движение в неинерциальных системах отсчета. 5 2 3	вращения, главные оси и моменты инерции.	5	2	1	2
Твердого тела.	Теорема Штейнера. Кинетическая энергия для)		1	<i>L</i>
Движение в неинерциальных системах отсчета.	вращения и плоского движения абсолютно				
	твердого тела.				
	Движение в неинерциальных системах отсчета.	5	2		2
	Силы инерции и их особенности. Центробежная)			3

сила инерции. Сила Кориолиса. Примеры				
проявления сил инерции.				
Молекулярная физика и термодинамика как				
науки. Основные положения МКТ. Масса				
молекул. Относительная молекулярная масса.				
Количество вещества. Моль. Число Авогадро.				
Молярная масса. Размеры молекул. Термо-	7	2	2	2
динамические системы и параметры. Давление.	/	2	2	3
Объем. Температура. Температурные шкалы.				
Равновесное и неравновесное состояние системы.				
Термодинамический процесс. Функции состояния				
системы.				
Идеальный газ. Законы Бойля-Мариотта, Гей-				
Люссака, Шарля. Закон Авогадро. Уравнение				
состояния идеального газа. Смеси идеальных	6	2	1	3
газов. Законы Дальтона и Амага. Реальные газы.				
Уравнение Ван-дер-Ваальса.				
Внутренняя энергия термодинамической				
системы. Работа и теплота. Первый закон				
термодинамики. Теплоемкость. Внутренняя				
энергия идеального газа. Уравнение Майера.	5	2	1	3
Адиабатический процесс. Политропические				
процессы. Работа идеального газа при				
политропических процессах.				
Основное уравнение МКТ идеального газа.				
Средние скорость и энергия молекул. Внутренняя				
энергия идеального газа. Распределение	7	2	1	3
Максвелла по скоростям и энергиям молекул				
идеального газа. Распределение Больцмана. и				

Моморожно Голимские Моморо ст				
Максвелла-Больцмана. Макро-состояние и				
микросостояние термодинамической системы.				
Статистический вес. Энтропия. Второй закон				
термодинамики. Третий закон термодинамики.				
Электростатика как наука. Электрические заряды.				
Электризация тел. Элементарный заряд.				
Дискретность заряда макроскопических тел.	6	2	1	3
Закон сохранения заряда. Точечный заряд. Закон				
Кулона для вакуума и для среды.				
Электрическое поле. Вектор напряженности.				
Принцип суперпозиции электрических полей.				
Силовые линии поля. Потенциал. Эквипотенци-				
альные поверхности. Электрический диполь и	7	2	1	3
его поведение в электрических полях.				
Циркуляция и ротор электростатического поля.				
Теорема Гаусса				
для вектора напряженности электрического поля.				
Строение молекул полярных и неполярных				
диэлектриков. Поляризация диэлектриков в				
электрическом поле. Вектор поляризации.				
Диэлектрическая восприимчивость. Сторонние и	5	2	1	3
связанные заряды. Вектор электрического		2	1	3
смещения. Диэлектрическая проницаемость				
среды. Теорема Гаусса для вектора				
электрического смещения.				
Условия равновесия свободных зарядов в				
проводниках. Проводники в электрическом поле.				
Индуцированные заряды. Электроемкость	5	2	1	3
проводника. Конденсаторы и их электроемкость.				
Батареи конденсаторов. Энергия заряженного				
L	I	l	l	

проводника, конденсатора, электрического поля.				
Постоянный электрический ток. Носители тока.				
Сила тока. Вектор плотности тока. Уравнение				
непрерывности. Сторонние силы.				
Электродвижущая сила. Разность	7	2	1	3
потенциалов. Закон Ома. Работа и мощность				
тока. Закон Джоуля-Ленца. Расчеты				
электрических цепей.				
Правила Кирхгофа. Магнитное поле в вакууме. Взаимодействие				
токов. Закон Био-Савара-Лапласа. Поле				
движущегося заряда. Сила Лоренца. Закон				
Ампера. Контур с током в магнитном поле.				
Дивергенция и ротор магнитного поля.				
Магнитное поле в веществе. Напряженность				
магнитного поля. Диамагнетизм. Парамагнетизм.				
Ферромагнетизм. Явление электромагнитной	6	2	1	3
индукции. Электродвижущая сила индукции.				
Токи Фуко. Явление самоиндукции. Энергия				
магнитного поля. Вихревое электрическое поле.				
Ток смещения. Уравнения Максвелла.				
Колебательный контур. Свободные затухающие и				
вынужденные электрические колебания.				
Переменный ток. Электромагнитные волны.				
ИТОГО	108	36	18	54

III.Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- вопросы и задачи для подготовки к модулям рейтинг-контроля,
- требования к рейтинг-контролю;

- - вопросы к зачету

IV. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Типовые контрольные задания для проверки уровня сформированности компетенции ОПК-2 — способность использовать базовые знания фундаментальных разделов физики, химии, биологии, экологии в объеме, необходимом для освоения, физических, химических, биологических, экологических основ в общей, физической и социально-экономической географии

Этап формирования компетенции, в котором участвует дисциплина	Типовые контрольные задания для оценки знаний, умений, навыков (2-3 примера)	Показатели и критерии оценивания компетенции, шкала оценивания
Владеть навыками и приемами решения физических задач.	Решите задачи: 1. За 2 минуты материальная точка прошла половину окружности радиуса R=60 см. Вычислить за это время: а) значение модуля средней скорости точки; б) среднее значение путевой скорости. 2. В сосуде объемом 4 л находится 300 г углекислого газа при температуре 17°C. Определите концентрацию и давление газа в сосуде.	Правильный ответ — 2 балла Неполный ответ — 1 балл
Уметь применять физические законы при рассмотрении	Какой физический закон описывает явления	Правильный ответ – 2 балла

естественно-научных	1. Свободное падение тел.	
задач.	2. Нагревание тел.	Неполный ответ –
	3. Электризации тел.	1 балл
Знать		
фундаментальные	С формулируйте физические	Правильный
физические законы и	законы:	ответ – 2 балла
принципы, лежащие	1. Закон всемирного тяготения.	
в основе	2. Закон Авогадро.	Неполный ответ –
современной	3. Закон Кулона.	1 балл
физической картины		
мира.		

V. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) Основная литература:

- 1. Волков А.Г. Механика [Электронный ресурс] : учебное пособие / А.Г. Волков, О.Г. Гребенкина, К.А. Шумихина. Электрон. текстовые данные. Екатеринбург: Уральский федеральный университет, 2016. 116 с. 978-5-321-02489-8. Режим доступа: http://www.iprbookshop.ru/66170.html
- 2. Механика и молекулярная физика [Электронный ресурс] : практикум / И.А. Лыков [и др.]. Электрон. текстовые данные. Екатеринбург: Уральский федеральный университет, 2016. 104 с. 978-5-7996-1667-0. Режим доступа: http://www.iprbookshop.ru/66554.html
- 3. Синенко, Е.Г. Механика: учебное пособие / Е.Г. Синенко, О.В. Конищева; Министерство образования и науки Российской Федерации, Сибирский Федеральный университет. Красноярск: Сибирский федеральный университет, 2015. 236 с.: табл., ил. Библиогр. в кн. ISBN 978-5-7638-3184-9; То же [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=435839

4. Молекулярная физика. Термодинамика. Конденсированные состояния [Электронный ресурс] : учеб. пособие / Ш.А. Пиралишвили [и др.]. — Электрон. дан. — Санкт-Петербург : Лань, 2017. — 200 с. — Режим доступа: https://e.lanbook.com/book/91292

б) Дополнительная литература:

- 1. Дубровский, В.Г. Механика, термодинамика и молекулярная физика: сборник задач и примеры их решения : учебное пособие / В.Г. Дубровский, Г.В. Харламов ; Министерство образования и науки Российской Федерации, Новосибирский государственный технический университет. 2-е издание, испр. и доп. Новосибирск : НГТУ, 2015. 184 с. : схем. Библиогр. в кн. ISBN 978-5-7782-2686-9 ; То же [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=438309
- 2. Кузьмичева В.А. Молекулярная физика и термодинамика [Электронный ресурс] : курс лекций / В.А. Кузьмичева. Электрон. текстовые данные. М. : Московская государственная академия водного транспорта, 2016. 48 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/65668.html

VI. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Получение дополнительных знаний по дисциплине возможно в Физической энциклопедии, доступной в сети Интернет.

VII. Методические указания для обучающихся по освоению дисциплины

Вопросы по теории для подготовки к опросам рейтинг-контроля Кинематика

- 1. Предмет изучения физики (определение).
- 2. Предмет изучения механики (определение).
- 3. Предмет изучения кинематики (определение).
- 4. Материя, формы и свойства материи (определение).
- 5. Механическое движение (определение).

- 6. Физическая система отсчета (определение).
- 7. Материальная точка (определение).
- 8. Абсолютно твердое тело (определение).
- 9. Траектория движения материальной точки (определение).
- 10. Радиус вектор материальной точки (определение).
- 11. Уравнение движения материальной точки (формулы с расшифровкой всех величин).
- 12. Степень свободы механического движения (определение).
- 13. Длина пути материальной точки (определение, единицы измерения).
- 14. Вектор перемещения материальной точки (определение, формула).
- 15. Средняя скорость движения материальной точки (определение, формула, единицы измерения).
- 16. Мгновенная скорость материальной точки (определение, величина, направление, формулы, единицы измерения).
- 17. Среднее ускорение материальной точки (определение, формула, единицы измерения).
- 18. Мгновенное ускорение материальной точки (определение, формулы, единицы измерения).
- 19. Касательное ускорение материальной точки (определение, величина, формула, направление, единицы измерения).
- 20. Нормальное ускорение материальной точки (определение, величина, формула, направление, единицы измерения).
- 21. Уравнение равномерного прямолинейного движения материальной точки (формула с расшифровкой всех величин).
- 22. Уравнение равноускоренного прямолинейного движения материальной точки (формула с расшифровкой всех величин).
- 23. Поступательное движение абсолютно твердого тела (определение).
- 24. Вращение абсолютно твердого тела вокруг неподвижной оси (определение).

- 25. Угловая скорость вращения абсолютно твердого тела вокруг неподвижной оси (определение, величина, формула, направление, единицы измерения).
- 26. Угловое ускорение вращения абсолютно твердого тела вокруг неподвижной оси (определение, величина, формула, направление, единицы измерения).
- 27. Период равномерного вращения абсолютно твердого тела (определение, единицы измерения).
- 28. Частота равномерного вращения абсолютно твердого тела (определение, единицы измерения).
- 29. Уравнение равномерного вращения абсолютно твердого тела вокруг неподвижной оси (формула с расшифровкой всех величин).
- 30. Уравнение равноускоренного вращения абсолютно твердого тела вокруг неподвижной оси (формула с расшифровкой всех величин).

Динамика

- 1. Что изучает динамика?
- 2. Первый закон Ньютона (формулировка).
- 3. Инерциальные и неинерциальные системы отсчета (определение, примеры).
- 4. Опишите гелиоцентрическую и геоцентрическую системы отсчета и их свойства.
- 5. Сила (определение; условия, при которых сила полностью задана).
- 6. Инертная и гравитационная массы (определения, сравнение по величине).
- 7. Импульс материальной точки и абсолютно твердого тела (определения, формулы).
- 8. Второй закон Ньютона для материальной точки (формулировка, математическая запись).
- 9. Третий закон Ньютона (формулировка, математическая запись, направление сил).
- 10. Перечислите 4 вида взаимодействий, известных современной физике.
- 11. Что такое деформация?

- 12. Чем отличаются упругая и пластическая деформации?
- 13. Перечислите типы простых деформаций с различными изменениями формы тел.
- 14. Закон Гука (общая формулировка, формулы для упруго деформированной пружины и линейно деформированного стержня с расшифровкой всех величин).
- 15. Сила реакции опоры (когда возникает, направление, физическая природа).
- 16. Закон Всемирного тяготения (формулировка, математическая запись, величина гравитационной постоянной, направление сил).
- 17. Сила тяжести (определение, величина, направление).
- 18. Что такое свободное падение? Ускорение свободного падения (величина, от чего зависит).
- 19. Вес тела (определение, физическая природа).
- 20. Опишите, чем отличаются вес тела и сила тяжести.
- 21. Сила сухого трения и ее виды (определение, формулы, сравнение по величине).
- 22. Закон сохранения импульса системы материальных точек (определение).
- 23. Центр масс системы материальных точек (определение, формула).
- 24. Моменты импульса материальной точки относительно полюса и оси (определения, формулы).
- 25. Момент силы относительно полюса и оси (определения, формулы).
- 26. Закон сохранения момента импульса системы материальных точек (определение).
- 27. Элементарная работа силы (определение, знак).
- 28. Мощность силы (определение, две формулы с расшифровкой всех величин).
- 29. Энергия (определение, основные виды энергий). Механическая энергия (определение).
- 30. Кинетическая энергия (определение, формулы для материальной точки и абсолютно твердого тела).

- 31. Теорема о кинетической энергии (формулировка, математическая запись).
- 32. Консервативные силы (определение, примеры).
- 33. Потенциальная энергия (определение).
- 34. Потенциальная энергия поднятого над Землей тела и упруго деформированной пружины (формулы с расшифровкой всех величин).
- 35. Теорема о потенциальной энергии (формулировка, математическая запись).
- 36. Закон сохранения механической энергии системы материальных точек (формулировка).
- 37. Момент инерции тела (определение, формула, физический смысл).
- 38. Уравнение движения центра масс абсолютно твердого тела (формула с расшифровкой всех величин).
- 39. Кинетическая энергия абсолютно твердого тела, вращающегося вокруг оси (формула с расшифровкой всех величин).
- 40. Кинетическая энергия при плоском движении абсолютно твердого тела (формула с расшифровкой всех величин).

МКТ и термодинамика

- 1. Молекулярная физика и термодинамика (предмет изучения и отличия).
- 2. Основные положения МКТ (краткая формулировка).
- 3. Что такое броуновское движение?
- 4. Относительная молекулярная масса (определение, формула).
- 5. Атомная единица массы (определение, величина).
- 6. Что такое моль?
- 7. Число Авогадро (определение, величина).
- 8. Термодинамическая система (определение). Какая система называется замкнутой?
- 9. Термодинамические параметры (определение, примеры).
- 10. Давление (определение, формула, единицы измерения).
- 11. Объемы: удельный и молярный (определения, формулы, связь).

- 12. Температура (определение, физический смысл, шкалы Цельсия и Кельвина).
- 13. Равновесное состояние термодинамической системы и равновесный процесс (определения).
- 14. Релаксационный процесс (определение).
- 15. Функция состояния термодинамической системы (определение, примеры).
- 16. Идеальный газ (описание модели).
- 17. Закон Бойля-Мариотта (формулировка, формула, графики).
- 18. Закон Гей-Люссака (формулировка, формула, графики).
- 19. Закон Шарля (формулировка, формула, графики).
- 20. Закон Авогадро (формулировка).
- 21. Уравнение состояния идеального газа (три формы записи с расшифровкой всех величин).
- 22. Закон Дальтона для смеси идеальных газов (формулировка, формула).
- 23. Закон Амага для смеси идеальных газов (формулировка, формула).
- 24. Уравнение состояния газа Ван-дер-Ваальса (формула с расшифровкой всех величин, физический смысл поправок).
- 25. Барометрическая формула (с расшифровкой всех величин).
- 26. Внутренняя энергия (определение).
- 27. Теплота, количество теплоты (определения). Способы теплообмена.
- 28. Теплоемкости: тела, удельная, молярная (определения, формулы, связь).
- 29. Уравнение Майера для теплоемкостей идеального газа (с расшифровкой всех величин).
- 30. Первое начало термодинамики (формулы с расшифровкой всех величин, формулировка).
- 31. Работа идеального газа при изобарическом и изохорическом процессах (формулы с расшифровкой всех величин).
- 32. Работа идеального газа при адиабатическом процессе (формула с расшифровкой всех величин).

- 33. Работа идеального газа при изотермическом процессе (формула с расшифровкой всех величин).
- 34. Адиабатический процесс (определение, формулы, графики).
- 35. Политропический процесс (определение, формулы).
- 36. Основное уравнение МКТ идеального газа (две формулы с расшифровкой всех величин).
- 37. Средняя энергия поступательного движения молекул идеального газа (формула с расшифровкой всех величин).
- 38. Закон равнораспределения энергии по степеням свободы молекул (формулировка).
- 39. Средняя энергия молекул идеального газа (формула с расшифровкой всех величин).
- 40. Внутренняя энергия идеального газа (формулы с расшифровкой всех величин).
- 41. Распределение Максвелла по скоростям молекул (определение, формула).
- 42. Распределение Максвелла по энергиям молекул (определение, формула).
- 43. Скорости молекул: средняя, средняя квадратичная, наиболее вероятная (формулы, соотношение).
- 44. Распределение Больцмана (определение, формула).
- 45. Распределение Максвелла-Больцмана (определение, формула).
- 46. Макро- и микросостояния термодинамической системы (определения).
- 47. Статистический вес (определение).
- 48. Энтропия (определения Клаузиуса, Больцмана и физический смысл).
- 49. Второе начало термодинамики (формулировки Клаузиуса и Больцмана).
- 50. Теорема Нернста (формулировка).

Электростатика

- 1. Предмет изучения электростатики.
- 2. Элементарный заряд (определение, величина).
- 3. Закон сохранения электрического заряда (формулировка).
- 4. Точечный заряд (определение).

- 5. Закон Кулона для вакуума (формулировка, формула в скалярной записи).
- 6. Закон Кулона для вакуума (формулировка, формула в векторной записи).
- 7. Закон Кулона для среды (формулировка, формула в скалярной записи).
- 8. Закон Кулона для среды (формулировка, формула в векторной записи).
- 9. Электростатическое поле (определение).
- 10. Вектор напряженности электрического поля (определение, единицы измерения).
- 11. Вектор напряженность электрического поля точечного заряда (формула с расшифровкой всех величин, направление).
- 12. Силовые линии электрического поля (определение, густота, направление).
- 13. Потенциал электрического поля (определение, формула, единицы измерения).
- 14. Потенциал электрического поля точечного заряда (формула с расшифровкой всех величин).
- 15. Связь между потенциалом и вектором напряженности электрического поля (две формулы с расшифровкой всех величин).
- 16. Эквипотенциальные поверхности (определение, густота, ориентация относительно вектора напряженности).
- 17. Электрический диполь, его ось и электрический момент (определения).
- 18. Электрическое поле диполя (зависимости напряженности и потенциала от расстояния, графическое изображение).
- 19. Поведение диполя в однородном и неоднородном электрическом поле (кратко описать).
- 20. Циркуляция и ротор вектора напряженности электростатического поля (две формулы с расшифровкой всех величин).
- 21. Теорема Гаусса для вектора напряженности электростатического поля в интегральной записи (формулировка, формула).
- 22. Теорема Гаусса для вектора напряженности электростатического поля в дифференциальной записи (формулировка, формула).
- 23. Строение молекул полярных и неполярных диэлектриков (кратко описать).

- 24. Связанные и сторонние заряды в диэлектрике (определения).
- 25. Вектор поляризации диэлектрика (определение).
- 26. Связь векторов поляризации диэлектрика и напряженности электрического поля (формула с расшифровкой всех величин).
- 27. Диэлектрическая восприимчивость (определение, от чего зависит).
- 28. Связь объемной плотности связанных зарядов и вектора поляризации (формула с расшифровкой всех величин).
- 29. Вектор электрического смещения (определение, формула).
- 30. Теорема Гаусса для вектора электрического смещения в интегральной записи (формулировка, формула).
- 31. Теорема Гаусса для вектора электрического смещения в дифференциальной записи (формулировка, формула).
- 32. Сегнетоэлектрики (определение) и их основные свойства (кратко перечислить).
- 33. Условия равновесия зарядов в проводниках (кратко описать).
- 34. Индуцированные заряды в проводнике (определение).
- 35. Электроемкость проводника (определение, формулы, от чего зависит).
- 36. Электроемкость конденсатора (определения, формулы, от чего зависит).
- 37. Конденсаторы (определение), типы конденсаторов.
- 38. Энергия заряженного проводника (три формулы с расшифровкой всех величин).
- 39. Энергия заряженного плоского конденсатора (три формулы с расшифровкой всех величин).
- 40. Энергия однородного электрического поля (три формулы с расшифровкой всех величин).

Задачи для подготовки к опросам рейтинг-контроля

Кинематика

Первый тип задач на нахождение средней путевой скорости и модуля средней скорости материальной точки.

- 1. За 2 минуты материальная точка прошла половину окружности радиуса R=60 см. Вычислить за это время: а) значение модуля средней скорости точки; б) среднее значение путевой скорости.
- 2. Материальная точка двигалась прямолинейно и прошла расстояние 12 м. Первые 4 м она двигалась со скоростью 5 м/с. На оставшейся части пути она половину времени двигалась со скоростью 15 м/с, а последний участок со скоростью 2 м/с. Найти среднюю за все время движения скорость точки.
- 3. Автомобиль прошел прямолинейный участок пути длиной 50 км с постоянной скоростью 90 км/ч. Затем, повернув под углом 60°, проехал равномерно прямолинейно еще 60 км со скоростью 72 км/ч. Найдите среднюю путевую скорость и модуль средней скорости автомобиля за все время пути.

Во втором типе задач необходимо найти временные зависимости векторов скорости и ускорения, а также их модулей по известным уравнениям движения материальной точки.

- 1. Радиус-вектор точки относительно начала координат меняется со временем t по закону $\stackrel{\rightarrow}{r} = \alpha \ t \ + \beta \ t^2 j \ ,$ где α и β положительные i
 - постоянные, i и j орты осей X и Y. Найти: а) уравнение траектории точки y(x); б) зависимость от времени скорости v, ускорения a и модулей этих величин.
- 2. Уравнение движения точки задано следующим выражением: $\vec{r} = 12\vec{i} + 6\vec{j} 3t^2k$, где i , j и k орты осей X, Y и Z. Определите t зависимости от времени скорости v , ускорения a и модулей этих величин.
- 3. Уравнение движения материальной точки задано в виде: $x = 2 t 0.4 t^2$, $y = 0.2 t^2$, z = t 0.8. Определить значение скорости и ускорения точки, через 5 с после начала отсчета времени.

В третьем типе задач необходимо найти:уравнение движение по известным временным зависимостям вектора скорости;временную зависимость вектора скорости по известным временным зависимостям вектора ускорения.

- 1. Частица двигается в плоскости XУ из начала координат, при этом ее скорость изменяется с течением времени по закону $v = 6 4 \ j$, где i и i
 - j орты осей X и Y. Найдите уравнение движения и уравнение траектории частицы.
- 2. Частица совершает движение, при этом ее ускорение изменяется с течением времени по закону a=i 2j+4k, где i, j, k орты осей X, Y
 - и Z. Найти модуль скорости через 2 секунды после начала движения, если известно, что начальная скорость частицы задана уравнением $= \vec{i} + \vec{j} + k$ v_0 i j

3. Частица совершает движение, при этом ее ускорение изменяется с течением времени по закону a=i 2 j+4 k , где i , j , k — орты осей X, Y

и Z. Найти модуль скорости через 2 секунды после начала движения, если известно, что начальная скорость частицы задана уравнением $= \vec{i} + \vec{j} + k$

Динамика

В задачах первого типа рассматривается движение тел по наклонной плоскости.

- 1. Для подъема груза массой 500 кг по эстакаде с углом наклона 30°, приложили силу 15 кН. Определите ускорение, с которым перемещался груз по наклонной плоскости, если коэффициент трения между грузом и поверхностью эстакады 0,1?
- 2. Тело начинает скользить по наклонной плоскости, составляющей с

горизонтом угол α =45°. Пройдя расстояние S=36,4 см, тело приобретает скорость v=2 м/с. Чему равен коэффициент трения тела о плоскость? Для решения задач второго типа требуется применение закона сохранения импульса.

- 1. Тело массой 1 кг, движущееся горизонтально со скоростью 1 м/с, догоняет второе тело массой 0,5 кг и неупруго сталкивается с ним. Какую скорость получат тела, если: 1) второе тело стояло неподвижно; 2) второе тело двигалось со скоростью 0,5 м/с в том же направлении, что и первое тело; 3) второе тело двигалось со скоростью 0,5 м/с в направлении, противоположном направлению движения первого тела.
- 2. Конькобежец массой 80 кг, стоя на коньках на льду, бросает камень массой 5 кг со скоростью 8 м/с в горизонтальном направлении. Определите величину и направление скорости конькобежца после броска.

Третий тип задач на определение работы силы и использование закона сохранения механической энергии.

- 1. Автомобиль массой 2 т начал движение и преодолел первые 100 м пути за 1 мин. Определите работу, которую совершил при этом двигатель автомобиля, если коэффициент сопротивления движению равен 0,5.
- 2. Шофер автомобиля выключает двигатель за 25 метров до препятствия на дороге. Коэффициент трения между колесами и дорожным покрытием μ=0,2. При какой предельной скорости движения автомобиль успеет остановиться перед препятствием?

МКТ и термодинамика

Для решения задач первого типа необходимо применение уравнения состояния идеального газа и газовых законов.

- 1. В сосуде объемом 4 л находится 300 г углекислого газа при температуре 17°C. Определите концентрацию и давление газа в сосуде.
- 2. В резервуаре при нормальном атмосферном давлении содержится азот, плотность которого равна 1,25 кг/м³. Определите температуру газа.

В задачах второго типа рассматриваются смеси идеальных газов.

1. В сосуде объемом 2 дм³ содержится смесь 0,5 кг водорода и 2,5 кг кислорода при температуре −20°С. Определить давление и молярную массу смеси этих газов.

2. Сосуд разделен перегородкой на две части объемы которых V_1 =1 л и V_2 =2 л и в которых находится газ при давлении соответственно P_1 =100 кПа и P_2 =30 кПа. Какое давление установится в сосуде, если вынуть перегородку? Считать, что температура при этом не изменится.

Решение третьего типа задач основано на применении первого закона термодинамики, формул для внутренней энергии идеального газа и работы газа в различных процессах.

- 1. Кислород массой 320 г нагревают на 60°К в первом случае изобарно, а во втором случае изохорно. Какое количество теплоты потребуется для нагревания газа в том и другом случае?
- 2. Водород массой 24 г при температуре 17°C расширяется при постоянном давлении, увеличивая свой объем в 3 раза. Найти работу газа, изменение его внутренней энергии и количество сообщенной газу теплоты.

Электростатика

Решение первого типа задач основано на применении закона Кулона для вакуума и для диэлектрической среды.

- 1. Два точечных заряда, находясь в воздухе на расстоянии 12 см друг от друга, взаимодействуют с некоторой силой. На каком расстоянии нужно поместить эти заряды в масле (ε =5), чтобы сила их взаимодействия не изменилась?
- 2. Сила кулоновского взаимодействия между двумя точечными зарядами в воздухе на расстоянии 24 см равна 1 кН. Заряды поместили в керосин (ε=2) и уменьшили расстояние между ними в 3 раза. Определите силу кулоновского взаимодействия между зарядами в керосине.

Задачи второго типа посвящены расчетам напряженности электрических полей системы точечных зарядов, их решение основано на применении принципа суперпозиции электрических полей.

1. Неподвижные точечные заряды величиной 9 нКл и 1 нКл находятся на расстоянии 10 см друг от друга. Определите напряженность

- электрического поля в точке А, расположенной на расстоянии 7 см от первого и 3 см от второго заряда соответственно.
- 2. В вершинах квадрата со стороной 3 см расположены заряды $q_1 = -2$ нКл, $q_2 = 3$ нКл, $q_3 = -3$ нКл и $q_4 = 6$ нКл. Определить модуль вектора напряженности электрического поля, создаваемого зарядами в центре квадрата.

Список обязательных вопросов для получения зачета по дисциплине:

- Физика как наука. Материальная точка. Абсолютно твердое тело.
 Траектория. Путь. Вектор перемещения.
- 2. Скорость и ускорение материальной точки.
- 3. Первый, второй и третий законы Ньютона.
- 4. Закон всемирного тяготения. Сила тяжести. Вес тела.
- 5. Силы трения и их виды.
- 6. Импульс материальной точки. Закон сохранения импульса.
- 7. Моменты импульса материальной точки относительно полюса и оси. Закон сохранения момента импульса.
- 8. Работа и мощность силы.
- 9. Кинетическая энергия материальной точки. Теорема о кинетической энергии. Потенциальная энергия для упруго деформированной пружины и тела, поднятого над Землей. Теорема о потенциальной энергии.
- 10. Закон сохранения механической энергии.
- 11. Основные положения МКТ. Модель идеального газа.
- 12. Количество вещества. Моль. Число Авогадро. Молярная масса.
- 13. Давление. Объем. Температура. Температурные шкалы.
- 14. Законы Бойля-Мариотта, Гей-Люссака, Шарля, Авогадро. Уравнение состояния идеального газа.
- 15. Законы Дальтона и Амага для смесей идеальных газов.
- 16. Количество теплоты. Способы теплообмена. Внутренняя энергия идеального газа.

- Теплоемкость тела, молярная и удельная теплоемкости. Уравнение Майера.
- 18. Адиабатический процесс. Политропический процесс.
- 19. Работа термодинамической системы при изменении объема. Работа системы при изопроцессах.
- 20. Первый, второй и третий законы термодинамики.
- Электрические заряды. Элементарный заряд. Точечный заряд.
 Закон сохранения заряда.
- 22. Закон Кулона для вакуума. Закон Кулона для среды.
- 23. Вектор напряженности электрического поля. Силовые линии поля. Принцип суперпозиции электрических полей.
- 24. Потенциал электрического поля. Эквипотенциальные поверхности.
- 25. Диэлектрики. Сторонние и связанные заряды.
- 26. Условия равновесия свободных зарядов в проводниках. Индуцированные заряды.
- Конденсаторы. Типы конденсаторов. Электроемкость конденсаторов.
 Энергия заряженного конденсатора.
- 28. Электрический ток. Сила тока. Вектор плотности тока.
- 29. Электрические цепи. Закон Ома для однородного участка цепи. Закон Ома для замкнутой цепи.
- 30. Работа и мощность тока. Закон Джоуля-Ленца.

Темы обязательных задач для получения зачета по дисциплине:

- 1. Нахождение средней путевой скорости и модуля средней скорости материальной точки.
- 2. Применение закона сохранения импульса.
- 3. Применение закона сохранения механической энергии.
- 4. Применение уравнения состояния идеального газа и газовых законов.
- 5. Применение первого закона термодинамики, формул для внутренней энергии идеального газа и работы газа в различных процессах.
- 6. Применение закона Кулона для вакуума и для диэлектрической среды.

7. Расчеты напряженности электрических полей системы точечных зарядов.

Требования к рейтинг-контролю.

Рейтинг-контроль включает в себя два письменных опроса (модуля) по темам:

- 1. Кинематика, динамика,
- 2. МКТ и термодинамика, электричество.

Распределение баллов:

Модуль №1

теория – 20 баллов

-20 баллов.

Модуль №2

теория – 20 баллов

-20 баллов.

Дополнительные баллы – 20 баллов.

Максимальное количество баллов — 100 баллов.

Комментарии к распределению баллов.

Оба письменных опроса состоят из двух частей.

Первая часть включает в себя 10 вопросов по теории, правильный ответ на каждый вопрос оценивается в 2 балла, неполный ответ в 1 балл. Теоретическая часть модуля считается успешно пройденной, если суммарный результат составляет не менее 10 баллов.

Вторая часть включает в себя 4 задачи, правильное решение каждой задачи оценивается в 5 баллов. Практическая часть модуля считается успешно пройденной, если суммарный результат составляет не менее 10 баллов.

При активной работе во время аудиторных практических занятий студент может получить дополнительные баллы за решение задач у доски — от 2 до 5 баллов за задачу в зависимости от ее сложности и правильности решения.

Студент, успешно прошедший практические части модулей рубежного контроля, то есть набравший не менее чем по 10 баллов за решение задач модуля №1 и модуля №2, а также имеющий итоговую сумму баллов за теорию и практику не менее 50 баллов, получает зачет автоматически.

Студент, набравший по всем формам контроля менее 20 баллов, к сдаче зачета не допускается. Студент, не набравший необходимого количество баллов по модульным опросам, сдает зачет в последнюю учебную неделю семестра. Зачет проводится в письменной форме, студенту необходимо ответить на вопросы теории и решить типовые задачи по обоим модулям семестра. Максимальное количество баллов за зачетную работу — 60 баллов, минимальное 30, поскольку для получения зачета необходимо набрать итоговую сумму не менее 50 баллов.

VIII. информационных Перечень технологий, педагогических И используемых при осуществлении образовательного процесса ПО дисциплине, включая перечень программного обеспечения информационных справочных систем (по необходимости)

Преподавание учебной дисциплины строится на сочетании лекций, практических занятий и самостоятельной работы студентов.

Список программного обеспечения:

- 1. Google Chrome
- 2. Microsoft Windows 10 Enterprise
- 3. MS Office 365 pro plus

IX. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Наименование специальных* помещений		
	помещений и	обеспечения.
	помещений для	Реквизиты
	самостоятельной	подтверждающего
	работы	документа
Учебная аудитория для проведения	Проектор EPSON	Google Chrome – бесплатно
занятий лекционного типа,	EB-1880 c потолоч.	Microsoft Office 365 pro plus - Акт
семинарского типа, курсового	креплен.в комплекте с	приема-передачи № 369 от 21 июля
проектирования, групповых и	экраном SeremMedia	2017
индивидуальных консультаций,	Учебная мебель	Microsoft Windows 10 Enterprise -
текущего контроля и промежуточной	Переносной ноутбук	Акт приема-передачи № 369 от 21
аттестации №109 (170021 Тверская		июля 2017
обл., Тверь, ул. Прошина, д. 3, корп. 2)		Kaspersky Endpoint Security 10 для
		Windows – Акт на передачу прав
		№2129 от 25 октября 2016 г.
		-

Помещения для самостоятельной работы:

Наименование помещений	Оснащенность помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
Учебная аудитория для проведения занятий лекционного типа, семинарского типа, курсового проектирования, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации и самостоятельной работы № 118 (170021 Тверская обл., Тверь, ул. Прошина, д. 3, корп. 2)	Лазерный принтер SAMSUNGML-2850D Доска интеракт. Ніtachi Star Board в комплекте со стойкой Доска белая офисная магнит «Proff» Компьютер iRUCorp 510 15-2400/4096/500/DVD-RW Учебная мебель	Аdobe Reader XI — бесплатно ArcGIS 10.4 for Desktop - Акт приема передачи на основе договроа №39 а от 18.12.2014 Google Chrome — бесплатно Каspersky Endpoint Security 10 для Windows — Акт на передачу прав №2129 от 25 октября 2016 г. МЅ Office 365 pro plus - Акт приема-передачи № 369 от 21 июля 2017 Microsoft Windows 10 Enterprise - Акт приема-передачи № 369 от 21 июля 2017 MapInfo Professional 12.0 - Акт о передаче прав по условиям договора № 26/2014-У от 10.02.14 Microsoft Visual Studio Enterprise 2015 - Акт предоставления прав № Tr035055 от 19.06.2017 Mozilla Firefox 46.0.1 (х86 ги) — бесплатно Notepad+ + - бесплатно OpenOffice — бесплатно QGIS 2.16.2.16.2 Nidebo — бесплатно WinDjView 2.1 — бесплатно

Х. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел рабочей программы дисциплины	Описание внесенных изменений	Дата и протокол заседания факультета, утвердившего изменения
1.	III. Перечень учебно- методического обеспечения для самостоятельной работы обучающихся по дисциплине	Скорректирован перечень учебно-методического обеспечения	Протокол № 9 от 24.05.2017 Учёного совета факультета географии и геоэкологии
2.	IV. Фонд оценочных средств для проведения промежуточной аттестации	Переработаны типовые контрольные задания для проверки уровня сформированности компетенций	
3.	V. Перечень основной и дополнительной учебной литературы	Внесены новые электронный библиотечные системы	
4.		Обновлен перечень необходимого оборудования	
5.	VI. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (или модуля)	Добавлен перечень Интернет- ресурсов.	Протокол № 9 от 22.05.2019 г. Учёного совета факультета географии и геоэкологии