Документ подписан простой электронной подписью

Информация о владельце:

фио: Смирнов Сергей Министерство науки и высшего образования Российской Федерации

Должность: врио ректора

Дата подписания: 10.08.2023 16:23 ТБОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Б.Б.Педько

мая 2023 г.

Рабочая программа дисциплины (с аннотацией)

Квантовая механика

Направление подготовки 03.03.03 Радиофизика

профиль

Физика и технология материалов и устройств радиоэлектроники

Для студентов 3,4 курса, очной формы обучения

Составитель: к.ф.-м.н., доцент Зубков В.В.

І. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины является: формирование у студентов основных представлений о квантовых закономерностях

Задачами освоения дисциплины являются:

- изучение основных физических моделей и процессов в рамках как нерелятивистской, так и релятивистской квантовой механики;
- установление связи между различными физическими явлениями, вывод основных законов в виде математических уравнений.

2. Место дисциплины в структуре ООП

Дисциплина «Квантовая механика» изучается в модуле Теоретическая физика Блока 1. Дисциплины обязательной части учебного плана ООП.

Раздел теоретической физики «Квантовая механика» излагается в 6-7 семестрах и его главной задачей является создание фундаментальной базы знаний, на основе которой в дальнейшем можно развивать более углубленное и детализированное изучение всех разделов физики в теоретической физики и различных специализированных курсов направления «Физика». Для успешного освоения дисциплины необходимо уверенно владеть математическим аппаратом в рамках курса линейной алгебры и математического анализа. Некоторые необходимые элементы математического и функционального анализа и алгебры, не входящие в стандартный курс высшей математики, читаемой для физиков, вводятся по мере необходимости. Теоретические дисциплины (или модули) и практики, для которых освоение данной дисциплины (или модуля) необходимо как предшествующее: курс термодинамики и статистической физики, а также дисциплины по углублению профессиональных компетенций.

3. Объем дисциплины: <u>9</u> зачетных единиц, <u>324</u> академических часа, **в том** числе:

контактная аудиторная работа: лекции $\underline{58}$ часов, практические занятия $\underline{58}$ часа;

самостоятельная работа: 208 часов, в том числе контроль 27 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения	Планируемые результаты обучения по дисциплине
образовательной программы	
(формируемые компетенции)	
УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.1. Анализирует задачу, выделяя ее базовые составляющие; УК-1.2. Определяет, интерпретирует и ранжирует информацию, требуемую для решения поставленной задачи; УК-1.5. Рассматривает и предлагает возможные
	варианты решения поставленной задачи, оценивая
	их достоинства и недостатки.
ОПК-1. Способен применять базовые	ОПК-1.1. Применяет базовые знания в области
знания в области физики и радиофизики и использовать их в профессиональной	физико-математических наук для решения задач профессиональной деятельности.
деятельности, в том числе в сфере	
педагогической деятельности.	
ОПК-2. Способен проводить	ОПК-2.2. Проводит теоретическое изучение
экспериментальные и теоретические	объектов, систем и процессов в рамках темы
научные исследования объектов, систем и	научного исследования.
процессов, обрабатывать и представлять	
экспериментальные данные.	

5. Форма промежуточной аттестации и семестр прохождения

Зачет в 6 семестре, экзамен в 7 семестре.

6. Язык преподавания: русский.

II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий.

1.Для студентов очной формы обучения

Учебная программа – наименование	Всего	Контактная работа	Самостоя
разделов и тем	(час.)	(час.)	тельная
			работа, в
			том числе
			Контроль

						(час.)
		Лек	ции	_	ические ятия	
		всего	в т.ч. ПП	всего	в т.ч. ПП	
1. Исторические предпосылки создания	6	1		1		4
квантовой механики.						
2. Линейные операторы. Задача на	12	2		2		8
собственные функции и собственные						
значения. Эрмитовы операторы и их						
свойства.	1.4	2		2		0
3. Уравнение Шредингера. Уравнение	14	3		3		8
непрерывности. Стационарное решение.4. Соотношение неопределенности	10	2		2		6
4. Соотношение неопределенности Гейзенберга.	10	2		2		0
5. Задача движения в поле центральных	10	2		2		6
сил. Водородоподобный атом.	10					U
6. Квантовый осциллятор. Спектр.	10	2		2		6
Матричное представление.	10			_		
7. Матричное представление квантовой	10	2		2		6
механики. Эрмитовы матрицы.		_				
Унитарные матрицы и различные						
преобразования. Свойство унитарных						
матриц. Определение функции						
операторов.						
8. Момент импульса. Правила	10	2		2		6
коммутации. Собственные функции и						
собственные значения.						
9. Гейзенберговское представление.	10	2		2		6
Гейзенберговское уравнение движения.						
Связь с уравнениями Гамильтона.		_		_		_
10. Законы сохранения и сохраняющиеся	10	2		2		6
величины. Преобразования симметрии.						
Общие свойства преобразования.						
Понятие о теории групп и неприводимых						
представлениях. 11. Стационарная теория возмущений	10	2		2		6
(невырожденный случай и с учётом	10					U
вырождения).						
12. Вариационный принцип. Метод Ритца	10	2		2		6
(для основных и возбуждённых		~		_		
состояний).						
13. Нестационарная теория возмущений.	10	2		2		6
Золотое правило Ферми. Борновское						
приближение.						
14. Теория спина Паули. Матрицы Паули.	12	2		2		8
Вектор спина. Магнитный момент.		<u> </u>				
За 6 семестр	144	28		28		88
15. Спинорбитальное расщепление в	10	2		2		6
атомах.						
16. Аномальный эффект Зеемана.	10	2		2		6

17. Системы тождественных частиц. Принцип Паули. Метод Хартри-Фока.	10	2	2	6
18. Двухэлектронная система. Атом гелия. Парагелий, ортогелий.	14	2	2	10
19. Релятивистская квантовая механика. Уравнение Дирака. Плоские волны.	11	2	2	7
20. Релятивистские поправки к уравнению Шредингера. Уравнение Паули.	14	2	2	10
21.Испускание и поглощение излучения. Коэффициент Эйнштейна. Случай центральных сил. Правило отбора.	10	2	2	6
22.Периодическая таблица Менделеева. Векторная модель атома.	10	2	2	6
23. Тонкая структура атомных уровней. Правило интервалов Ланде, множитель Ланде.	10	2	2	6
24. Молекула водорода. Обменное взаимодействие. Энергия связи.	10	2	2	6
25.Метод фазовых функций. Фазовое уравнение.	10	2	2	6
26.Движение электрона в периодическом поле. Энергетические зоны. Теорема Блоха.	16	3	3	10
27. Система тождественных частиц. Распределение Ферми-Дирака и Бозе-Эйнштейна.	16	3	3	10
28.Приближение свободных электронов в теории металлов. Эффективная масса электрона.	10	2	2	6
За 7 семестр	180	30	30	93
экзамен	27			27
ИТОГО	324	58	58	208

III. Образовательные технологии

Учебная программах-	Вид занятия	Образовательные технологии
наименование разделов и тем		
1. Исторические предпосылки	Лекции, практические	Активное слушание.
создания квантовой механики.	занятия	Групповое решение задач.
		Решение индивидуальных
		задач
		Мозговой штурм
2. Линейные операторы.	Лекции, практические	Активное слушание.
Задача на собственные	занятия	Групповое решение задач.
функции и собственные		Решение индивидуальных
значения. Эрмитовы		задач
операторы и их свойства.		Мозговой штурм
3. Уравнение Шредингера.	Лекции, практические	Активное слушание.
Уравнение непрерывности.	занятия	Групповое решение задач.
Стационарное решение.		Решение индивидуальных
		задач

			Мозговой штурм
4. Соотношение неопределенности Гейзенберга.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
5. Задача движения в поле центральных сил. Водородоподобный атом.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
6. Квантовый осциллятор. Спектр. Матричное представление.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
7. Матричное представление квантовой механики. Эрмитовы матрицы. Унитарные матрицы и различные преобразования. Свойство унитарных матриц. Определение функции операторов.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
8. Момент импульса. Правила коммутации. Собственные функции и собственные значения.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
9. Гейзенберговское представление. Гейзенберговское уравнение движения. Связь с уравнениями Гамильтона.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
10. Законы сохранения и сохраняющиеся величины. Преобразования симметрии. Общие свойства преобразования. Понятие о теории групп и неприводимых представлениях.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
11. Стационарная теория возмущений (невырожденный случай и с учётом вырождения).	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
12. Вариационный принцип. Метод Ритца (для основных и возбуждённых состояний).	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
13. Нестационарная теория	Лекции,	практические	Активное слушание.

возмущений. Золотое правило Ферми. Борновское приближение.	занятия		Групповое решение задач. Решение индивидуальных задач Мозговой штурм
14. Теория спина Паули. Матрицы Паули. Вектор спина. Магнитный момент.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
15. Спинорбитальное расщепление в атомах.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
16. Аномальный эффект Зеемана.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
17. Системы тождественных частиц. Принцип Паули. Метод Хартри-Фока.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
18. Двухэлектронная система. Атом гелия. Парагелий, ортогелий.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
19. Релятивистская квантовая механика. Уравнение Дирака. Плоские волны.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
20. Релятивистские поправки к уравнению Шредингера. Уравнение Паули.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
21.Испускание и поглощение излучения. Коэффициент Эйнштейна. Случай центральных сил. Правило отбора.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
22.Периодическая таблица Менделеева. Векторная модель атома.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
23. Тонкая структура атомных уровней. Правило интервалов Ланде, множитель Ланде.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных

24. Молекула водорода. Обменное взаимодействие. Энергия связи.	Лекции, занятия	практические	задач Мозговой штурм Активное слушание. Групповое решение задач. Решение индивидуальных
25.Метод фазовых функций.	Лекции,	практические	задач Мозговой штурм Активное слушание.
Фазовое уравнение.	занятия		Групповое решение задач. Решение индивидуальных задач Мозговой штурм
26. Движение электрона в периодическом поле. Энергетические зоны. Теорема Блоха.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
27. Система тождественных частиц. Распределение Ферми-Дирака и Бозе-Эйнштейна.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм
28.Приближение свободных электронов в теории металлов. Эффективная масса электрона.	Лекции, занятия	практические	Активное слушание. Групповое решение задач. Решение индивидуальных задач Мозговой штурм

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Форма проведения экзамена: студенты, освоившие программу курса «Квантовая механика» могут получить оценку по итогам семестровой и полусеместровой рейтинговой аттестации согласно «Положению о рейтинговой системе обучения ТвГУ» (протокол №8 от 30 апреля 2020 г.).

Если условия «Положения о рейтинговой системе …» не выполнены, то экзамен сдается согласно «Положению о промежуточной аттестации (экзаменах и зачетах) обучающихся по программам высшего образования ТвГУ» (протокол №11 от 28 апреля 2021 г.)

Для проведения текущей и промежуточной аттестации:

- УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач:
- УК-1.1. Анализирует задачу, выделяя ее базовые составляющие;
- УК-1.2. Определяет, интерпретирует и ранжирует информацию, требуемую для решения поставленной задачи;
- УК-1.5. Рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки.

Для всех индикаторов один способ аттестации.

Задание:

1. Действие квантовомеханического оператора координаты на волновую функцию в координатном представлении определяется соотношением

$$\mathbf{A}. \quad \hat{x}\psi = x\psi$$

$$\mathbf{b.} \quad \hat{x}\psi = \frac{d\psi}{dx}$$

$$B. \quad \hat{x}\psi = \int_{-\infty}^{\infty} dx\psi$$

- Г. Ответ зависит от состояния квантовой системы
- 2. На частицу, находящуюся в одномерной бесконечно глубокой потенциальной яме шириной

$$U(x) = \begin{cases} 0, & 0 < x < a, \\ \infty, & x \le 0, x \ge a, \end{cases}$$

наложили малое возмущение. Чему равна поправка второго порядка к энергии основного состояния?

Способ аттестации: письменный

Критерии оценки:

- *Высокий уровень (3 балла):* Понимает физику явления, составляет математические выражения для получения решения. Получает правильный ответ.
- *Средний уровень (2 балла):* Понимает физику явления. Испытывает сложности с составлением математических выражений для получения решения. Получает правильный ответ.

- *Низкий уровень (1 балл):* Понимает физику явления. Испытывает сложности с составлением математических выражений для получения решения. Из-за алгебраической неточности не получает правильный ответ.

ОПК-1. Способен применять базовые знания в области физики и радиофизики и использовать их в профессиональной деятельности, в том числе в сфере педагогической деятельности:

ОПК-1.1. Применяет базовые знания в области физико-математических наук для решения задач профессиональной деятельности.

Задание:

В момент времени t=0 частица со спином 1/2 находится в состоянии, в котором проекция спина на ось z равна +1/2. Гамильтониан частицы в магнитном поле имеет вид $H = A\sqrt{2}\left(\sigma_x + \sigma_y\right)$. Здесь A — постоянная, σ_x, σ_y — матрицы Паули. Найдите, через какое время проекция спина будет равна -1/2.

Способ аттестации: письменный

Критерии оценки:

- *Высокий уровень (3 балла):* Понимает физику явления, составляет математические выражения для получения решения. Получает правильный ответ.
- *Средний уровень (2 балла):* Понимает физику явления. Испытывает сложности с составлением математических выражений для получения решения. Получает правильный ответ.
- *Низкий уровень (1 балл):* Понимает физику явления. Испытывает сложности с составлением математических выражений для получения решения. Из-за алгебраической неточности не получает правильный ответ.
- ОПК-2. Способен проводить экспериментальные и теоретические научные исследования объектов, систем и процессов, обрабатывать и представлять экспериментальные данные:
- ОПК-2.2. Проводит теоретическое изучение объектов, систем и процессов в рамках темы научного исследования.

Задание:

1. Физическая величина A имеет в состоянии $|\psi\rangle$ определенное значение, если

А. $|\psi\rangle$ не зависит от времени

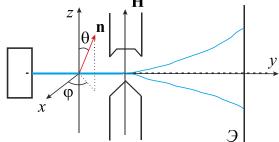
Б. $|\psi\rangle$ является одним из собственных векторов наблюдаемой \hat{A}

В. $|\psi\rangle$ является собственным вектором оператора Гамильтона системы

 Γ . $|\psi\rangle$ не зависит от координат

2. Частица находится в состоянии

$$|\psi\rangle = 2i|f_1\rangle - |f_2\rangle + 4i|f_3\rangle.$$


Оператор \hat{A} имеет вид:

$$\hat{A} = |f_1\rangle\langle f_1| - 2i|f_1\rangle\langle f_2| + |f_3\rangle\langle f_3|$$

Векторы $|f_i\rangle$ образуют ортонормированный базис. Найти среднее значение оператора $\langle \hat{A} \rangle$ в этом состоянии.

3. Пусть частицы в пучке поляризованы вдоль направления ${\bf n}$, т.е. спинор имеет вид

$$\chi_{\mathbf{n}} = \begin{pmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2}e^{i\varphi} \end{pmatrix}$$

Вектор напряженности магнитного поля в приборе Штерна направлен вдоль оси Oz. Найти отношение интенсивностей в двух точках на экране (интенсивность в верхней к интенсивности в нижней) после прохождения прибора

Штерна, считая, что интенсивности пропорциональны вероятностям обнаружить в одной точке спин $-\frac{1}{2}$, а в другой $+\frac{1}{2}$.

Способ аттестации: письменный

Критерии оценки:

- *Высокий уровень (3 балла):* Понимает физику явления, составляет математические выражения для получения решения. Получает правильный ответ.
- *Средний уровень (2 балла):* Понимает физику явления. Испытывает сложности с составлением математических выражений для получения решения. Получает правильный ответ.
- *Низкий уровень (1 балл):* Понимает физику явления. Испытывает сложности с составлением математических выражений для получения решения. Из-за алгебраической неточности не получает правильный ответ.

V. Учебно-методическое и информационное обеспечение дисциплины

- 1) Рекомендуемая литература
- а) Основная литература:
- 1. Квантовая механика в приложениях к физике твердого тела / Краснопевцев Е.А. Новосиб.:НГТУ, 2010. 355 с. http://znanium.com/catalog/product/556655
- 2. Блохинцев Д. И. Основы квантовой механики [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2004. 672 с. Режим доступа: https://e.lanbook.com/book/619.
- 3. Ефремов, Ю. С. Квантовая механика : учебное пособие для вузов / Ю. С. Ефремов. 2-е изд., испр. и доп. М. : Издательство Юрайт, 2018. 458 с. https://biblio-online.ru/book/9C203039-ED72-441A-9807-E742AB812981/kvantovaya-mehanika
- 4. Елютин П. В., Кривченков В. Д. Квантовая механика с задачами Физматлит, 2001, 300 с. http://biblioclub.ru/index.php?page=book_red&id=68967&sr=1

- б) Дополнительная литература:
- 1. Шпольский Э. В. Атомная физика. Том 2. Основы квантовой механики и строение электронной оболочки атома [Электронный ресурс]: учеб. Электрон. дан. Санкт-Петербург: Лань, 2010. 448 с. Режим доступа: https://e.lanbook.com/book/443.
 - 2) Программное обеспечение
 - а) Лицензионное программное обеспечение
 - б) Свободно распространяемое программное обеспечение
 - 3) Современные профессиональные базы данных и информационные справочные системы
 - 1.96C«ZNANIUM.COM» www.znanium.com;
 - 2.ЭБС «Университетская библиотека онлайн»https://biblioclub.ru/;
 - 3.ЭБС «Лань» http://e.lanbook.com
- 4) Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

VI. Методические материалы для обучающихся по освоению дисциплины

– планы практических (семинарских) занятий:

Семинар 1. Решение задач на тему «Исторические предпосылки создания квантовой механики».

Примеры задач:

Найти расщепление уровней энергии атома водорода в однородном магнитном поле \vec{H} .

Семинар 2. Решение задач на тему «Линейные операторы. Задача на собственные функции и собственные значения. Эрмитовы операторы и их свойства».

Примеры задач:

1. Доказать, что если $\left[\widehat{A},\widehat{B}\right]=1$, то $\left[\widehat{A},\widehat{B^2}\right]=2\widehat{B}$

2. Доказать, что если \widehat{A} и \widehat{B} эрмитовы и не коммутируют, то оператор $i[\widehat{A}, \widehat{B}]$ - эрмитов.

Семинар 3. Решение задач на тему «Уравнение Шредингера. Уравнение непрерывности. Стационарное решение».

Примеры задач:

Найти уровни энергии в одномерной симметричной потенциальной яме: $V\left(x\right) = -V_{0}_{\Pi \text{pu}} \left|x\right| < a \; ; \; V\left(x\right) = 0_{\Pi \text{pu}} \; \left|x\right| > a \; .$

Семинар 4. Решение задач на тему «Соотношение неопределенности Гейзенберга».

Примеры задач:

Показать, что между размером участка Δx , в котором локализована группа волн и разбросом волновых векторов Δk группы волн существует соотношение $\Delta x \cdot \Delta k \sim \pi$

Семинар 5. Решение задач на тему «Задача движения в поле центральных сил. Водородоподобный атом».

Примеры задач:

1. Рассчитать расщепление уровня атома водорода с n=2 в слабом однородном электрическом поле.

Семинар 6. Решение задач на тему «Квантовый осциллятор. Спектр. Матричное представление.».

Примеры задач:

1. Найти уровни энергии и вектора состояния одномерного гармонического осциллятора в постоянном внешнем поле $H = p^2/2m + kx^2/2 - Fx$. Сравнить точный ответ с первой поправкой к осцилляторным уровням энергии, если внешнее поле рассматривается как возмущение.

Семинар 7. Решение задач на тему «Матричное представление квантовой механики. Эрмитовы матрицы. Унитарные матрицы и различные преобразования. Свойство унитарных матриц. Определение функции операторов.».

Примеры задач:

1. Показать, что если оператор A — скаляр, то $\left< J'M' \middle| A \middle| JM \right> = \delta_{JJ'} \delta_{MM'} \left< J \middle| A \middle| J \right>_{,\mathrm{T.e.}}$ его матричные элементы диагональны, но J и M и не зависят от M.

Семинар 8. Решение задач на тему «Момент импульса. Правила коммутации. Собственные функции и собственные значения.».

Примеры задач:

3. Указать, между какими уровнями заряженного сферического гармонического осциллятора возможны электромагнитные переходы в дипольном приближении. Вычислить время жизни первого возбужденного состояния осциллятора в этом приближении.

Семинар 9. Решение задач на тему «Гейзенберговское представление. Гейзенберговское уравнение движения. Связь с уравнениями Гамильтона.».

Примеры задач:

1. Найти вероятность отражения частицы при прохождении над одномерным потенциальным барьером $V(x) = V_0 \frac{|x|}{npu} |x| > a$; V(x) = 0 при |x| > a (энергия частицы больше высоты барьера).

Семинар 10. Решение задач на тему «Законы сохранения и сохраняющиеся величины. Преобразования симметрии. Общие свойства преобразования. Понятие о теории групп и неприводимых представлениях.».

Примеры задач:

1. Найти вероятность перехода атома трития H^3 из 1s состояния в 1s состояние иона He^{3+} при β -распаде одного из нейтронов ядра.

Семинар 11. Решение задач на тему «Стационарная теория возмущений (невырожденный случай и с учётом вырождения).».

Примеры задач:

2. Двухуровневая система с состояниями $|1\rangle$, $|2\rangle$, энергии которых есть $h\omega_1$, $h\omega_2$, подвергается действию не зависящего от времени возмущения W. Вычислить вероятность обнаружить то или иное состояние в момент времени t, если в момент времени t=0 система находилась в основном состоянии.

- методические рекомендации по организации самостоятельной работы студентов:

- 1. Изучить рекомендуемую литературу.
- 2. Просмотреть задачи, разобранные на аудиторных занятиях.
- 3. Разобрать задачи, рекомендованные преподавателем для самостоятельного решения, используя, при необходимости, примеры решения аналогичных задач.
- 4. Обсудить проблемы, возникшие при решении задач с преподавателем.

VII. Материально-техническое обеспечение

Учебная аудитория для	1 Экран настенный Lumien	Microsoft Windows 10
проведения занятий	2. Комплект учебной мебели	Enterprise
лекционного типа, занятий	на 24 посадочных места	MS Office 365 pro plus
семинарского типа,	3. Меловая доска	Acrobat Reader DC - бесплатно
курсового проектирования	4. Комплект переносной	Google Chrome – бесплатно
(выполнения курсовых	техники (ноутбук и проектор)	
работ), групповых и		
индивидуальных		
консультаций, текущего		
контроля и промежуточной		
аттестации,		

Лекционная аудитория № 202 Б (170002 Тверская обл.,		
г. Тверь, Садовый пер., д. 35)		
Учебная аудитория для	1. Проектор Panasonic PT-	Microsoft Windows 10
проведения занятий	VW340ZE	Enterprise
лекционного типа, занятий	2 . экран ScreenMedia	MS Office 365 pro plus
семинарского типа,	3. Ноутбук (переносной)	Acrobat Reader DC - бесплатно
курсового проектирования	4. Комплект учебной мебели	Google Chrome – бесплатно
(выполнения курсовых	на 60 посадочных мест	
работ), групповых и	5. Меловая доска	
индивидуальных		
консультаций, текущего		
контроля и промежуточной		
аттестации,		
Лекционная аудитория №		
227 (170002 Тверская обл., г.		
Тверь, Садовый пер., д. 35)		

VIII. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел	Описание внесенных	Реквизиты документа,
	рабочей программы	изменений	утвердившего
	дисциплины		изменения
1.			
2.			