Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Министерство науки и высшего образования Российской Федерации Должность: врио ректора

Дата подписания: 04.09.2023 11:1207 БОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Рабочая программа дисциплины (с аннотацией)

ОСНОВЫ ГЕННОЙ ИНЖЕНЕРИИ

Направление подготовки 06.03.01 Биология

Профиль подготовки Биоэкология

Для студентов 4 курса очной формы обучения

Составитель:

к.б.н., ст. преподаватель Игнатьев Д.И.

I. Аннотация

1. Наименование дисциплины в соответствии с учебным планом

Основы генной инженерии

2. Цели и задачи дисциплины

Цель освоения дисциплины — изучение основ генной, генетической, клеточной инженерии и молекулярного моделирования. Задачи освоения дисциплины:

- освоить терминологию, используемую в генетической и клеточной инженерии;
- изучить технологии создания рекомбинантных ДНК, трансформации и молекулярного клонирования;
- изучить технологию культивирования изолированных клеток и тканей;
- рассмотреть практические пути использования рекомбинантных ДНК и культур клеток и тканей.

3. Место дисциплины в структуре ООП

Дисциплина «Основы генной инженерии» входит в вариативную часть учебного плана ООП Биология в качестве дисциплины по выбору. Возникновение генетической инженерии связано, прежде всего, с развитием генетики и молекулярной биологии. Данная учебная дисциплина также органично связана со многими естественными науками: цитологией, органической химией, биохимией и др. Изучение генной инженерии предусмотрено на 4 курсе после освоения студентами основных химических и биологических дисциплин: Биохимия и молекулярная биология, Органическая химия, Микробиология. Вирусология, Цитология. Гистология, Единство и биоразнообразие клеточных типов, что позволяет учащимся проследить межпредметные связи и систематизировать полученные ранее теоретические знания.

4. Объем дисциплины:

4 зачетных единицы, 144 академических часа, **в том числе контактная работа:** лекции 0 часов, практические занятия 26 часов, **самостоятельная работа:** 91 часов, контроль – 27 часа.

5. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

11901 SalvilviDi	
Планируемые результаты	Планируемые результаты обучения по дисциплине
освоения образовательной	
программы (формируемые	
компетенции)	
Этап 2	Владеть: уровнем знаний и соответствующих
ПК-3: готовность применять	методов современной биологии.
на производстве базовые	Уметь: применять знания в теории и при решении
общепрофессиональные	практических задач производства.

знания теории и методов	Знать: основные теоретические положение и методы
современной биологии	современной биологии.

- 6. Форма промежуточной аттестации экзамен.
- 7. Язык преподавания русский.

П. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

1. Для студентов очной формы обучения

Учебная программа-наименование	Всего	Контактная работа (час.)		Самостояте льная
разделов и тем	(час.)	Лекции	Практическ ие работы	работа (час.)
1. Терминология и основные понятия генной и генетической инженерии.	32	0	4	28
2. Основные принципы конструирования рекомбинантных ДНК.	37	0	10	27
3. Технологии клеточной инженерии на основе генетически модифицированных клеток микроорганизмов, растений и животных.	48	0	12	36
Подготовка к экзамену	27			
ИТОГО	144	0	26	91

Ш. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- Типовые тестовые задания;
- Темы рефератов;
- Вопросы для подготовки к экзамену.

IV. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

1. Типовые контрольные задания для проверки уровня сформированности компетенции ПК-3: готовность

применять на производстве базовые общепрофессиональные знания теории и методов современной биологии

Этап формирования	Типовые контрольные задания	Показатели и критерии оценивания компетенции, шкала
компетенции, в для оценки знаний, умений,		оценивания
котором участвует	навыков (2-3 примера)	
дисциплина		
Этап 2	Темы рефератов	Максимальная оценка за реферат – 20 баллов. Критерии
Владеть: уровнем	1. Методы культивирования	оценивания:
знаний и	длительно выращиваемых культур	самостоятельность (уровень самостоятельной работы, планирование
соответствующих	каллусных тканей.	и выполнение всех этапов проектной деятельности) (1 балл);
методов современной	2. Получение и культивирование	научность представленного в проекте материала (использование
биологии.	протопластов растительных клеток.	конкретных научных терминов и возможность оперирования ими)
Этап 2		(2 балла); работа с информацией (уровень работы с информацией,
Уметь: применять		способа поиска новой информации) (2 балла); интегративность
знания в теории и при		(связь различных областей знаний) (2 балла); качество доклада,
решении практических		композиционная стройность, логичность изложения (3 балла);
задач производства.		качество оформления (структура текста, качество эскизов, схем,
		рисунков) (2 балла); наглядность (презентация: графики, схемы;
		четкость, доступность для восприятия) (2 балла); полнота
		раскрытия выбранной тематики исследования при защите (3 балла);
		представление проекта (культура речи, манера, использование
		наглядных средств, чувство времени, импровизационное начало,
		держание внимания аудитории) (2 балла); ответы на вопросы
		(полнота, аргументированность, логичность, убежденность,
		дружелюбие) (1 балл).
Этап 2	Тестовые задания	Каждый правильно выбранный вариант ответа оценивается в 1
Знать: основные	1. Какие ферменты необходимы для	балл:
теоретические	конструирования рекомбинантных	50% возможных баллов – «3»

положение и методы	ДНК:	70% возможных баллов – «4»
современной биологии.	• рестриктазы	85% возможных баллов – «5»
	• ДНК-лигазы	
	• инвертазы	
	• гидроксилазы	
	2. Ориджинами (ori-сайтами)	
	называются участки, в которых	
	происходит:	
	• начало биосинтеза белка	
	• находится ген-репрессор	
	• посадка ДНК- или РНК-	
	полимеразы	
	• инициация репликации или	
	транскрипции	

V. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

- а) Основная литература:
- 1. Сазанов А. А. Генетика: учебное пособие / А. А. Сазанов. СПб.: ЛГУ им. А. С. Пушкина, 2011. 264 с. [Электронный ресурс]. Режим доступа http://znanium.com/go.php?id=445036
- 2. Жимулев И. Ф. Общая и молекулярная генетика: учебное пособие / И. Ф. Жимулев; отв. ред. Е.С. Беляева, А.П. Акифьев. Изд. 4-е, стереотип. 3-му. Новосибирск: Сибирское университетское издательство, 2007. 480 с. ISBN 5-379-00375-3; 978-5-379-00375-3; [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=57409
- 3. Щелкунов С.Н. Генетическая инженерия / С.Н. Щелкунов. 3-е изд. Новосибирск: Сибирское университетское издательство, 2010. 514 с. http://biblioclub.ru/index.php?page=book&id=57527
- б) Дополнительная литература:
- 1. Ермишин А. П. Генетически модифицированные организмы и биобезопасность / А. П. Ермишин. Минск: Белорусская наука, 2013. 172 с. ISBN 978-985-08-1592-7; [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=231206
- 2. Генетические основы селекции растений. Клеточная инженерия: в 4-х т. / под ред. О.Н. Пручковской. Минск: Белорусская наука, 2012. Т. 3. Биотехнология в селекции растений. 489 с. ISBN 978-985-08-1392-3; [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=142474
- 3. Тузова Р. В. Молекулярно-генетические механизмы эволюции органического мира. Генетическая и клеточная инженерия / Р. В. Тузова, Н. А. Ковалев. Минск: Белорусская наука, 2010. 396 с. ISBN 978-985-08-1186-8; [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=89370

VI. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Catalog of Human Genes and Disorders: Online Mendelian Inheritance in Man http://www.ncbi.nlm.nih.gov

Human Mitochondrial Genome Database (M1TOMAP) http://www.mitomap.org National Center for Biotechnology Information (NCBI) http://www.ncbi.nlm.nih.gov Российская Ассоциация медицинской лабораторной диагностики (РАМЛД) http://www.medlinks.ru

Медицинский сервер для специалистов лабораторной службы России. http://clinlab.ru

Медицинская поисковая система для специалистов и пациентов http://www.medinfo.ru

Электронно-библиотечные системы:

- 1. ЭБС «Университетская библиотека онлайн» http://biblioclub.ru
- 2. ЭБС «Лань» https://e.lanbook.com
- 3. ЭБС «ИНФРА-М» http://znanium.com
- 4. e-library https://elibrary.ru

VII. Методические указания для обучающихся по освоению дисциплины

Типовые тестовые задания

- 1. Какие ферменты необходимы для конструирования рекомбинантных ДНК:
- а) рестриктазы, б) ДНК-лигазы, в) инвертазы, г) гидроксилазы
- 2. Какая из перечисленных технологий является основой генетической инженерии:
- а) создание рекомбинантных ДНК, б) выделение ДНК из организмов, в) расщепление ДНК на фрагменты, г) выделение хромосом, д) получение плазмид
- 4. Установите соответствие между процессами транскрипции и трансляции и образующимися в результате этих процессов соединениями.

	1 '
Тип процесса	Образующиеся соединения
А. Транскрипция	1. Аминокислоты
Б. Трансляция	2. ДНК
	3. РНК
	4. Жиры
	5. Углеводы
	6. Белки

Темы рефератов

- 1. История развития метода культивирования тканей и клеток высших растений.
- 2. Питательные среды, используемые для культивирования изолированных клеток и тканей.
- 3. Понятие о каллусной ткани. Функции растительных каллусных тканей. Виды каллусных тканей и их особенности.
- 4. Методы культивирования длительно выращиваемых культур каллусных тканей.
- 5. Получение и культивирование протопластов растительных клеток.
- 6. Индукция и реализация программы развития in vitro от клетки к растению.
- 7. Стабильность и вариабельность геномов растительных клеток in vitro.
- 8. Практическое использование клеточной инженерии растений.
- 9. Образование гибридов растений путём слияния протопластов.
- 10. Проблемы и перспективы генетической инженерии растений.
- 11. Векторы, используемые в генетической инженерии растений.

- 12. Биологическая фиксация азота и генетическая инженерия.
- 13. Мировоззренческие и социально-этические аспекты генетической инженерии.
- 14. Способы увеличения продуктивности производственных штаммов микроорганизмов.

Вопросы для подготовки к экзамену

- 1. Основные понятия генетической инженерии.
- 2. Основные принципы конструирования рекомбинантных ДНК.
- 3. Тонкая структура гена. Получение генов.
- 4. Ферменты расщепления (рестриктазы) и сшивания (лигазы).
- 5. Векторные молекулы.
- 6. Строение и биологические функции плазмид.
- 7. Клонирование и идентификация клонированных ДНК.
- 8. Определение нуклеотидной последовательности по Максаму-Гилберту, Сэнджеру.
- 9. Генетическая инженерия промышленно важных микроорганизмов. Конструирование штаммов-продуцентов.
- 10. Использование генетической инженерии в растениеводстве.
- 11. Основные понятия клеточной инженерии.
- 12. Получение клеточного материала. Питательные среды, кривые роста.
- 13. Особенности и виды каллусной ткани.
- 14. Получение культивируемых каллусных клеток. Образование первичного каллуса.
- 15. Методы культивирования длительно выращиваемых культур каллусных тканей.
- 16. Получение и культивирование протопластов растительных клеток.
- 17. Культивирование одиночных клеток. Понятие о «кормящем слое» или ткани-«няньке».
- 18. Культура клеточных суспензий.
- 19. Индукция и реализация программы развития in vitro от клетки к растению. Морфогенез в каллусных тканях.
- 20. Практическое использование клеточной инженерии растений.

Требования к рейтинг-контролю

No॒	Вид контроля	Форма	Номер	Максимальное	Всего
модуля		отчетности и	учебной	количество	баллов
		контроля	недели	баллов	
1	Текущий	Выполнение			
		практических	1-8	15	30
		работ			

	Рейтинговый	Тестирование,	9	15	
		решение задач		13	
2	Текущий	Выполнение			
		практических	10-17	15	
		работ			30
	Рейтинговый	Тестирование,	18	15	
		решение задач	10	13	
	Промежуточный	Экзамен	19	40	100

VIII. Перечень педагогических и информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (по необходимости)

Перечень лицензионного обеспечения:

OC: Microsoft Windows
7-Zip 9.20 (x64 edition)
Adobe Reader XI (11.0.13) - Russian
Google Chrome
Kaspersky Endpoint Security 10 для Windows
Microsoft Office профессиональный плюс
WinDjView 2.0.2

IX. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Помещения, оборудованные ПК или ноутбуком, мультимедийным проектором.

Х. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел рабочей программы дисциплины	Описание внесенных изменений	Дата и протокол заседания кафедры, утвердившего изменения
1.			
2.			