ФИО: Смирнов Сергей Николаевич

УП: 04.05.01 ФПХ Эксперт. мед. химия 2024.plx

Должность: врио ректора инистерств О НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ Дата подписания: 14.07-2025 15:28:51 РОССИЙСКОЙ ФЕДЕРАЦИИ

69e375c64f7e975d4<mark>ф136794fc3b69</mark>f35f68EPC</mark>КОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Утверждаю:

Руководитель ООП

Феофанова М.А.

14 мая 2025г.

Рабочая программа дисциплины

Физические методы исследования

Закреплена за

Физической химии

кафедрой:

Направление

04.05.01 Фундаментальная и прикладная химия

УНИВЕРСИТЕ

подготовки:

Направленность

Экспертная и медицинская химия: теория и

(профиль):

практика.

Квалификация:

Химик. Преподаватель химии

Форма обучения: очная

Семестр: 7

Программу составил(и):

д.х.н., зав. какфедрой, Пахомов Павел Михайлович

Тверь, 2025

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели освоения дисциплины (модуля):

Целью освоения дисциплины является: изучение теоретических основ спектроскопических, интерференционно-дифракционных, визуальных и других физических методов исследования, непосредственное освоение методов спектрального анализа путем работы на спектрофотометрах, имеющихся в лаборатории спектроскопии, расшифровка и анализ полученных спектров, использование спектроскопических методов на практике (в научных исследованиях, заводских лабораториях и на производстве).

Задачи:

Задачами освоения дисциплины являются: в университетской подготовке химиков одной из важнейших задач является обучение проведению научных исследований в различных направлениях их специализации. Уровень исследований и ценность получаемых результатов непосредственно связаны с правильностью выбора и применением комплекса современных физических методов, которые могут помочь при решении поставленных перед исследователем химических и физико-химических проблем.

Преподавание данного курса имеет целью дать студенту понимание принципиальных основ, практических возможностей и ограничений важнейших для химиков физических методов исследования, знакомство с их аппаратурным оснащением и условиями проведения эксперимента, умение интерпретировать и грамотно оценивать экспериментальные данные, в том числе публикуемые в научной литературе. Студент должен научиться также оптимальному выбору методов для решения поставленных задач и делать заключения на основании анализа и сопоставления всей совокупности имеющихся данных.

Преподавание данного курса должно базироваться на всех пройденных ранее дисциплинах, входящих в учебный план подготовки химиков в университетах, прежде всего математики, физики, квантовой механики и строения вещества, неорганической химии, органической химии и физической химии.

В курсе, кроме достаточно глубокого изучения таких важнейших и широко применяемых химиками методов, как УФ, ИК, КР-спектроскопия, ЯМР, ЭПР, масс-спектрометрия, определение дипольных моментов, студентам следует также получить представление о таких более экзотических методах, как газовая электронография, ЯКР, Мессбауэровская спектроскопия и др., позволяющих, однако, извлекать порой уникальную и принципиально важную информацию о строении и свойствах веществ.

Вместе с лекционным курсом по возможности, при наличии приборной базы, следует проводить практические занятия и, во всяком случае, письменные контрольные работы и коллоквиумы.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Цикл (раздел) ОП: Б1.О

Требования к предварительной подготовке обучающегося:

Высокомолекулярные соединения

Избранные главы физической химии

Кристаллохимия

Хроматографический метод анализа и экспертная химия

Научно-исследовательская работа

Спектрофотометрия

Методика научного исследования

Органическая химия

Аналитическая химия

Физика

Математика

Строение вещества

Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Высокомолекулярные соединения

Избранные главы физической химии

Кристаллохимия

Коллоидная химия

Научно-исследовательская работа

Преддипломная практика

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость	3 3ET		
Часов по учебному плану	108		
в том числе:			
самостоятельная работа	30		
часов на контроль	27		

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

- ОПК-3.2: Использует стандартное программное обеспечение при решении задач химической направленности
- ОПК-4.1: Использует базовые знания в области математики и физики при планировании работ химической направленности
- ОПК-4.2: Обрабатывает данные с использованием стандартных способов аппроксимации численных характеристик
- ОПК-4.3: Интерпретирует результаты химических наблюдений с использованием физических законов и представлений
- ОПК-5.1: Использует современные IT-технологии при сборе, анализе, обработке и представлении информации химического профиля

5. ВИДЫ КОНТРОЛЯ

Виды контроля в семестрах	:
экзамены	7

6. ЯЗЫК ПРЕПОДАВАНИЯ

Язык преподавания: русский.

7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

№	Наименование разделов и тем	Вид занятия	Сем.	Часов	Примечание
	Раздел 1. 1. ВВЕДЕНИЕ				
1.1	1. ВВЕДЕНИЕ	Лек	7	1	
	Раздел 2. 2. Полный электромагнитный спектр и спектроскопические методы исследования.				

2.1	Полный электромагнитный спектр и	Лек	7	2	
	спектроскопические методы	JICK	'	2	
	исследования.				
	Полный электромагнитный спектр и	Ср	7	2	
	спектроскопические методы	P	'		
	исследования.				
	Раздел 3. 3. Теоретические основы				
	методов оптической спектроскопии (ИК,				
	УФ и КР спектроскопия).				
	Теоретические основы методов	Лек	7	2	
	оптической спектроскопии (ИК, УФ и КР				
	спектроскопия).				
3.2	Теоретические основы методов	Ср	7	4	
	оптической спектроскопии (ИК, УФ и КР				
	спектроскопия).				
	Раздел 4. 4. Качественный и				
	количественный спектральный анализ.				
	Качественный и количественный	Лек	7	2	
	спектральный анализ.	1		1	
	Качественный и количественный	Ср	7	6	
	спектральный анализ.				
	Раздел 5. 5. Методы радиоспектроскопии (ЯМР и ЭПР).				
	(ЯМР и ЭПР). Методы радиоспектроскопии (ЯМР и	Лек	7	2	
	методы радиоспектроскопии (ліміг и ЭПР).	JIEK	/	2	
	Методы радиоспектроскопии (ЯМР и	Ср	7	4	
	ЭПР).	P	'	'	
	Раздел 6. 6. Масс-спектрометрия и				
	хроматография				
	Масс-спектрометрия и хроматография	Лек	7	2	
6.2	Масс-спектрометрия и хроматография	Ср	7	4	
	Раздел 7. 7. Интерференционно-				
	дифракционные методы исследования				
	(рентгенография, электронография и				
	нейтронография).	-			
	Интерференционно-дифракционные	Лек	7	2	
	методы исследования (рентгенография,				
	электронография и нейтронография).			4	
	Интерференционно-дифракционные	Ср	7	4	
	методы исследования (рентгенография,				
	электронография и нейтронография). Раздел 8. 8. Визуальные методы	1			
	газдел в. в. визуальные методы исследования (оптическая, электронная и				
	атомно-силовая микроскопия).				
	Визуальные методы исследования	Лек	7	2	
	(оптическая, электронная и атомно-		'	_	
	силовая микроскопия).				
	Визуальные методы исследования	Ср	7	4	
	(оптическая, электронная и атомно-	1			
	силовая микроскопия).				
	Раздел 9. 9. Методы изучения				
	термических, оптических, реологических				
	и других свойств вещества				

9.1	Методы изучения термических,	Лек	7	2	
	оптических, реологических и других				
	свойств вещества				
9.2	Методы изучения термических,	Ср	7	2	
	оптических, реологических и других				
	свойств вещества				
9.3		Лек	7	0	
	Раздел 10. Экзамен по курсу "Физические				
	методы исследования"				
10.1	Физические методы исследования	Экзамен	7	0	

Образовательные технологии

ОПК-3

Способен применять расчетно-теоретические методы для изучения свойств веществ и процессов с их участием, используя современное программное обеспечение и базы данных профессионального назначения.

ОПК-4

Способен планировать работы химической направленности, обрабатывать и интерпретировать полученные результаты с использованием теоретических знаний и практических навыков решения математических и физических задач.

ОПК-5

Способен использовать информационные базы данных и адаптировать существующие программные продукты для решения задач профессиональной деятельности с учетом основных требований информационной безопасности.

Список образовательных технологий

1	Информационные (цифровые) технологии
2	Технологии развития критического мышления
3	Технологии развития дизайн-мышления
4	Методы группового решения творческих задач (метод Дельфи, метод 6–6, метод развивающей кооперации, мозговой штурм (метод генерации идей), нетворкинг и т.д.)
5	Тренинг
6	Портфолио
7	Дискуссионные технологии (форум, симпозиум, дебаты, аквариумная дискуссия, панельная дискуссия, круглый стол, фасилитированная и т.д.)

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные материалы для проведения текущей аттестации

В Приложение 2

8.2. Оценочные материалы для проведения промежуточной аттестации

В Приложение 2

8.3. Требования к рейтинг-контролю

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Рекомендуемая литература

Перечень программного обеспечения

1	Kaspersky Endpoint Security 10 для Windows
2	Adobe Acrobat Reader
3	Google Chrome
4	ABBYY Lingvo x5
5	Эко центр. Пластмассы и полимеры
6	SMART Notebook
7	MATLAB R2012b
8	Origin 8.1 Sr2
9	HyperChem
10	STATGRAPHICS Centurion XVI.II

Современные профессиональные базы данных и информационные справочные системы

1	ЭБС «Лань»
2	ЭБС ТвГУ
3	ЭБС BOOK.ru
4	Научная электронная библиотека eLIBRARY.RU (подписка на журналы)
5	Репозитарий ТвГУ
6	Виртуальный читальный зал диссертаций Российской государственной библиотеки
7	Журналы American Chemical Society (ACS)
8	Журналы издательства Taylor&Francis
9	Ресурсы издательства Springer Nature
10	Архивы журналов издательства Oxford University Press
11	Архивы журналов издательства Nature
12	Патентная база компании QUESTEL- ORBIT
13	БД Scopus
14	БД Web of Science
15	Электронная коллекция книг Оксфордского Российского фонда

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Аудит-я	Оборудование			
3-421	комплект учебной мебели, микроскопы, весы, Фурье ИК спектрометр, дополнительное оборудование для ИК Фурье спектрометра, комплекс			
3-412	комплект учебной мебели, переносной ноутбук, проектор, монометр универсальный, огнетушитель, печь муфельная, плитка эл., поляриметры,			

11. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ

ДИСЦИПЛИНЫ

ВВЕДЕНИЕ

Исторический экскурс по проблеме развития физических методов анализа. Лауреаты Нобелевских премий и другие выдающиеся ученые, внесшие существенный вклад в разработку различных физических методов. Прямые и косвенные методы исследования. Прямые и обратные решаемые задачи. Классификация физических методов исследования. Основы теории ошибок в эксперименте.

Тема 1. ПОЛНЫЙ ЭЛЕКТРОМАГНИТНЫЙ СПЕКТР И СПЕКТРОСКОПИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ.

Разделение полного электромагнитного спектра на диапазоны. Типы электромагнитного излучения для различных диапазонов и процессы, происходящие при поглощении или излучении электромагнитного излучения. Роль спектроскопических методов в изучении строения и свойств вещества.

Тема 2. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МЕТОДОВ ОПТИЧЕСКОЙ СПЕКТРОСКОПИИ (ИК, УФ И КР СПЕКТРОСКОПИЯ)

Виды спектроскопии в зависимости от характера взаимодействия электромагнитного излучения с веществом: спектроскопия поглощения (абсорбционная), спектроскопия отражения от поверхности вещества (отражательная), спектроскопия рассеяния и спектроскопия испускания (эмиссионная). Метод НПВО. Теория колебаний – основа ИК и Раман спектроскопии. Ближняя, средняя и дальняя ИК области. Активные колебания. Прямая и обратная спектральные задачи. Природа УФ спектров. Основы спектроскопии комбинационного рассеяния или Раман спектроскопии. Низкочастотные колебания и продольная акустическая мода. Задачи, решаемые с помощью методов УФ и Раман спектроскопии. Преимущества и недостатки методов оптической спектроскопии.

Тема 3. КАЧЕСТВЕННЫЙ И КОЛИЧЕСТВЕННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ Качественный спектральный анализ. Характеристические полосы поглощения. Валентные и деформационные колебания. Метод «отпечатков пальцев». Гармонический осциллятор и его частота колебаний. Природа ангармонизма колебаний. Интенсивность колебаний. Количественный спектральный анализ. Закон Бугера-Ламберта-Бера. Метод базисной линии. Влияние различных факторов на интенсивность и положение полос поглощения. Метод дейтерозамещения. Чувствительность спектроскопических методов и ошибки при спектральных измерениях.

Тема 4. МЕТОДЫ РАДИОСПЕКТРОСКОПИИ (ЯМР И ЭПР)

Физические основы явления ядерного магнитного резонанса. Снятие вырождения спиновых состояний в постоянном магнитном поле. Условие ядерного магнитного резонанса. Заселенность уровней энергии, насыщение, релаксационные процессы и ширина сигнала. Химический сдвиг и спин-спиновое расщепление в спектрах ЯМР. Константа экранирования ядра. Относительный химический сдвиг, его определение и использование в химии. Спин-спиновое взаимодействие ядер, его природа, число компонент мультиплетов, распределение интенсивности, правило сумм. Анализ спектров ЯМР первого и не первого порядков. Метод двойного резонанса.

Применение спектров ЯМР в химии. Техника и методика эксперимента. Структурный анализ. Химическая поляризация ядер. Блок-схема спектрометра ЯМР, типы спектрометров.

Принципы спектроскопии электронного парамагнитного (спинового) резонанса. Условие ЭПР. g-Фактор и его значение. Сверхтонкое расщепление сигнала ЭПР при взаимодействии с одним и несколькими ядрами. Число компонент мультиплета, распределение интенсивности. Константа СТС. Тонкое расщепление. Ширина линий. Приложение метода ЭПР в химии. Изучение механизмов химических реакций. Химическая поляризация электронов. Определение свободных радикалов и других парамагнитных центров. Использование спиновых меток. Блок-схема спектрометра ЭПР, особенности эксперимента, достоинства и ограничения метода.

Тема 5. МАСС-СПЕКТРОМЕТРИЯ И ХРОМАТОГРАФИЯ

Методы ионизации: электронный удар, фотоионизация, электростатическое неоднородное поле, химическая ионизация. Комбинированные методы. Ионный ток и сечение ионизации. Потенциалы появления ионов. Вертикальные и адиабатические

электронные переходы. Диссоциативная ионизация. Типы ионов в масс-спектрометрах. Принципиальная схема масс-спектрометра Демпстера. Фокусирующее действие однородного поперечного магнитного поля. Электростатическая фокусировка. Двойная фокусировка. Разрешающая сила масс-спектрометра. Ионный источник. Система напуска. Молекулярное течение газа. Времяпролетный масс-спектрометр. Квадрупольный масс-спектрометр. Спектрометр ион-циклотронного резонанса. Применение масс-спектрометрии. Идентификация вещества. Роль разрешения, потенциалов появления, методов ионизации, метастабильных ионов. Таблицы массовых чисел. Соотношение изотопов.

Методы газо-жидкостной и жидкостной хроматографии. Блок схемы промышленных хроматографов. Виды детекторов, применяемых в хроматографии. Вид хроматограммы в зависимости от особенностей изотерм адсобции.

Тема 6. ИНТЕРФЕРЕНЦИОННО-ДИФРАКЦИОННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ (РЕНТГЕНОГРАФИЯ, ЭЛЕКТРОНОГРАФИЯ И НЕЙТРОНОГРАФИЯ)

Открытие рентгеновских лучей. Теоретические основы рентгеноструктурного анализа. Геометрия дифракции. Уравнение Вульфа-Брегга. Большой и малый периоды. Методы Лауэ и Дебая-Шерера. Структурные задачи, решаемые методами большеугловой и малоугловой рентгеновской дифракции. Методы элетронографии и нейтронографии. Их сходство и различие с методом рентгенографии.

Тема 7. ВИЗУАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ (ОПТИЧЕСКАЯ, ЭЛЕКТРОННАЯ И АТОМНО-СИЛОВАЯ МИКРОСКОПИЯ).

Создание первого оптического микроскопа А. Левенгуком. Понятия разрешающая способность и числовая апертура объектива. Возможности оптической микроскопии. Просвечивающая и сканирующая электронная микроскопия. Теоретические основы и принцип работы электронного микроскопа. Возможности метода электронной микроскопии. Атомно-силовая и сканирующая туннельная микроскопии.

Тема 8. МЕТОДЫ ИЗУЧЕНИЯ ТЕРМИЧЕСКИХ, ОПТИЧЕСКИХ, РЕОЛОГИЧЕСКИХ И ДРУГИХ СВОЙСТВ ВЕЩЕСТВА

Основы методов термографии: ДТА, ДСК, ТГА и дилатометрия. Термические свойства вещества. Оптические световоды и их светопропускание. Причины светопотерь в световоде. Законы течения (реологии) жидкости и вискозиметрические методы. Электрические, диффузионные, сорбционные и другие свойства материала. Методы их изучения.

Примерный перечень вопросов для подготовки к экзамену

- 1. Назовите ученых, внесших определяющий вклад в развитие спектральных методов анализа. Когда окончательно сформировался метод ИК спектроскопии?
 - 2. Назовите основные виды спектроскопии.
- 3. Дайте классификацию спектроскопических методов по диапазонам электромагнитного спектра.
- 4. Почему спектроскопические методы исследования относятся к прямым физическим методам?
- 5. Проявление в ИК спектре конфигурационных, конформационных и деструкционных изменений.
 - 6. Как методом ИК спектроскопии можно изучать фазовые переходы в веществе?
 - 7. Основы рентгеноструктурного анализа.
 - 8. В чем суть метода дейтерозамещения в ИК спектральном анализе?
 - 9. Как определить энергию водородных связей и их концентрацию?
 - 10. Как изучать строение поверхности материала методом ИК спектроскопии?
- 11. Какие колебания осцилляторов (химических групп) расположены в ближней, средней и дальней ИК областях?
- 12. Как изучать упругую и высокоэластическую деформации полимеров методом ИК спектроскопии?
 - 13. Как изучать деструкционные процессы с помощью метода ИК спектроскопии?

- 14. В чем заключаются преимущества метода Фурье-ИК спектроскопии перед обычным методом ИК спектроскопии?
 - 15. Влияние рассеяния на ИК спектр поглощения. Метод базисной линии.
 - 16. В чем суть метода «отпечатков пальцев»?
- 17. Как оценить степень ориентации того или иного молекулярного сегмента с помощью метода ИК спектроскопии?
 - 18. Оценка длины транс-цепи методом продольной акустической моды.
 - 19. Принцип действия полимерного световода. Причины светопотерь в нем.
 - 20. Как получить ИК спектр полимерного волокна?
 - 21. В чем суть реооптических исследований?
 - 22. Принципы метода НПВО.
 - 23. Запись спектров в режиме IMAGE.
- 24. Качественный ИК спектральный анализ. Характеристические полосы поглощения.
 - 25. Основные валентные и деформационные колебания.
 - 26. Количественный ИК спектральный анализ. Суть закона Ламберта-Бугера-Бера.
 - 27. Оценка и причины погрешности в количественном ИК спектральном анализе.
 - 28. Основные характеристики ИК полосы поглощения.
 - 29. ИК дихроизм и ориентационное состояние полимеров.
 - 30. Как изучать фазовые переходы в веществе методом термического анализа?
 - 31. В чем суть метода дейтерозамещения?
 - 32. Конформационные дефекты и их проявление в ИК спектре.
 - 33. Водородная связь и ее проявление в ИК спектре.
 - 34. Ближняя, средняя и дальняя ИК области.
- 35. Преимущества метода Фурье-ИК спектроскопии перед обычным методом ИК спектроскопии.
 - 36. Влияние рассеяния на ИК спектр поглощения. Метод базисной линии.
- 37. Определение среднего размера рассеивающих частиц (поры, частицы наполнителя и др.) в полимерной матрице путем анализа рассеянного излучения в оптическом спектре.
 - 38. В чем суть метода «отпечатков пальцев»?
- 39. Как оценить степень ориентации того или иного молекулярного сегмента с помощью метода ИК спектроскопии?
 - 40. Оценка длины транс-цепи методом продольной акустической моды.
 - 41. ИК спектроскопия в режиме IMAGE.
 - 42. Принцип действия полимерного световода. Причины светопотерь в нем.
 - 43. Как получить ИК спектр полимерного волокна?
 - 44. В чем суть реооптических исследований?
 - 45. Основы метода УФ спектроскопии.
 - 46. КР-спектроскопия. Специфика метода и задачи, решаемые с е применением.
 - 47. Методы ЯМР и ЭПР спектроскопии.
 - 48. Визуальные методы исследования.
 - 49. Методы светорассеяния.
 - 50. Метод масс-спектрометрии.
 - 51. Интерференционно-дифракционные методы.
 - 52. Микроскопические методы.
 - 53. Термический анализ.

Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины:

- 1.
- а) Основная литература
- 1. Пахомов П.М., Хижняк С.Д., Андрианова Я.В. Физические методы исследования. 2 -е изд., перераб. и доп. Учеб. пособие для хим. фак. ун-тов 2016. 292 с. (имеется в библиотеке ТвГУ).
 - 2. Тагер А.А. Физико-химия полимеров. 2007. 4-е изд., перераб. и доп. Учеб. пособие

для хим. фак. ун-тов / А. А. Тагер; под ред. А. А. Аскадского. - М.: Научный мир, 2007. - 573с.

http://turbobit.net/7u9kxwwqampy.html.

- 3. Никитина Н. Г. Аналитическая химия и физико-химические методы анализа: учебник и практикум для вузов / Н. Г. Никитина, А. Г. Борисов, Т. И. Хаханина; под ред. Н. Г. Никитиной. 4-е изд. Электрон. дан. Москва: Юрайт, 2020. 394 с. (Высшее образование). Режим доступа: https://urait.ru/bcode/449690
- 4. Валова (Копылова) В. Д. Физико-химические методы анализа: учебное пособие / В. Д.Валова (Копылова), Л. Т.Абесадзе Лия Таймуразова; Российский университет кооперации. 4. Москва: Издательско-торговая корпорация "Дашков и К", 2022. 220 с. ВО Бакалавриат. Режим доступа: https://znanium.com/catalog/document?id=432246
- 5. Физико-химические методы анализа: учебное пособие для вузов / В. Н. Казин [и др.]; под ред. Плисса Е.М. Электрон. дан. Москва: Юрайт, 2021. 201 с. (Высшее образование). URL: https://urait.ru/bcode/485733
 - б) Дополнительная литература:
- 1. Высокомолекулярные соединения : учебник и практикум для академического бакалавриата / под ред. А. Б. Зезина. М.: Издательство Юрайт, 2016. 340 с. Серия : Бакалавр. Академический курс; ISBN 978-5-9916-5603-0. То же [Электронный ресурс]. Режим доступа: https://nashol.com/2017022893334/visokomolekulyarnie-soedineniya-zezina-a-b-2016.html
- 2. Киреев В.В. Высокомолекулярные соединения: учебник для бакалавров. М.: Издательство Юрайт, 2013. 602 с. Серия: Бакалавр. Углубленный курс. ISBN 978-5-9916-2280-6. Режим доступа: http://static.ozone.ru/multimedia/book_file/1009501915.pdf.
- 3. Пахомов П.М. Основы физики и химии полимеров. 2016. 163 с. Тверь: ТвГУ (имеется в библиотеке ТвГУ).
- 4. Кленин В. И. Высокомолекулярные соединения [Электронный ресурс] / В. И. Кленин, И. В. Федусенко. 2-е изд., испр. Санкт-Петербург : Лань, 2022. 512 с. Книга из коллекции Лань Химия. Режим доступа: https://e.lanbook.com/book/211184
 - 2. Программное обеспечение
 - а) Лицензионное программное обеспечение:
 - Microsoft Office профессиональный плюс 2013
 - Microsoft Windows 10 Enterprise
 - HyperChem
 - Origin 8.1
 - ISISDraw 2.4 Standalone
 - б) Свободно распространяемое программное обеспечение Google Chrome
- 3. Современные профессиональные базы данных и информационные справочные системы
 - 36C «ZNANIUM.COM» www.znanium.com;
 - ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/;
 - ЭБС «Лань» http://e.lanbook.com
- 4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины:
 - 1. Виртуальная образовательная среда ТвГУ (http://moodle.tversu.ru)
 - 2. Научная библиотека ТвГУ (http://library.tversu.ru)
 - http://library.tversu.ru
 - http://www.iprbookshop.ru/
 - https://biblioclub.ru/
 - https://www.nature.com/

https://rd.springer.com/