Документ подписан промины СТЕРГСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ

Информация о владельце: ФИО: Смирнов Сергей Николаевич РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: врио ректора БОУ ВО «ТВЕРС КОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» дата подписания: 22.07.2024 16:03:28

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Б.Б.Педько

мая

2024 г.

Рабочая программа дисциплины

БИОФИЗИКА Основы биофизики

Закреплена за

кафедрой:

Физики конденсированного состояния

Направление

03.03.02 Физика

подготовки:

Направленность

Медицинская физика

(профиль):

Квалификация: Бакалавр

Форма обучения: очная

Семестр: 4

Программу составил(и):

д-р физ.-мат. наук, проф., Солнышкин Александр Валентинович

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели освоения дисциплины (модуля):

изучение закономерностей физических процессов в живых системах, формирование представлений о теоретических основах и основных методах биофизики, применение полученных знаний и навыков в решении профессиональных задач

Задачи:

Сформировать у обучающихся базовые представления:

- о физических принципах строения и биофизических основах функционирования клеточных структур, тканей и органов;
 - механизмах транспорта веществ и генерации биопотенциалов;
- о применении физические законов для описания процессов происходящих в биологических системах

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Цикл (раздел) ОП: Б1.В.08Б1.В

Требования к предварительной подготовке обучающегося:

Теория вероятностей и математическая статистика

Молекулярная физика

Электричество и магнетизм

Механика

Физический практикум по молекулярной физике

Физический практикум по электричеству и магнетизму

Анатомия и физиология человека

Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Резонансные методы исследования вещества

Физико-технические основы методов ультразвукового исследования

Основы электромагнитной и радиационной безопасности

Научно-исследовательская работа

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость	3 3ET		
Часов по учебному плану	108		
в том числе:			
аудиторные занятия	64		
самостоятельная работа	24		

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ПК-3.2: Использует систематизированные теоретические и практические знания для определения и решения профессиональных задач в области медицинской физики

УК-1.1: Анализирует задачу, выделяя ее базовые составляющие

Уровень 1 задачу, выделяя ее базовые составляющие

Уровень 1 анализировать задачу, выделяя ее базовые составляющие

Уровень 1 методами решения и анализа задач, выделяя базовые составляющие

5. ВИДЫ КОНТРОЛЯ

Виды контроля	в семестрах	:
зачеты		4

6. ЯЗЫК ПРЕПОДАВАНИЯ

Язык преподавания: русский.

7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код	Наименование разделов и	Вид	Семестр	Часов	Источ-	Примечан-
занят.	тем	занятия	/ Kypc		ники	ие
	Раздел 1. Физика и биология					
1.1	Междисциплинарная связь физики и биологии. Основные открытия на стыке наук.	Лек	4	2	Л1.4Л2.5 Л2.2 Л2.3 Л2.4 Л2.7 Л2.6	
	Раздел 2. Физико-химические свойства биологических систем					
2.1	Химический состав и физические свойства основных классов биологических молекул. Межмолекулярные взаимодействия, вода и водные растворы.	Лек	4	2	Л2.1	
2.2	Химический состав и физические свойства основных классов биологических молекул. Межмолекулярные взаимодействия, вода и водные растворы.	Пр	4	4		
2.3	Открытые системы, неравновесная термодинамика в биологии. Стационарные состояния. Нелинейность живых систем, диссипативные структуры. Активные среды. Колебательные и автоволновые процессы в биологических системах как физическая основа пространственно-временной самоорганизации.	Лек	4	4	Л1.3 Л1.4Л2.2 Л2.7	

2.4	Открытые системы,	Пр	4	4	Л1.2 Л1.1	
	неравновесная термодинамика					
	в биологии. Стационарные					
	состояния. Нелинейность					
	живых систем,					
	диссипативные структуры.					
	Активные среды.					
	Колебательные и автоволновые					
	процессы в биологических					
	системах как физическая					
	основа					
	пространственно-временной					
2.5	самоорганизации.	п	4	2		
2.5	Клеточная ионная и	Лек	4	2		
	молекулярная хиральная асимметрии. Гомохиральность					
	аминокислот в белках и					
	сахаров, в т.ч. рибозы и					
	дезоксирибозы в нуклеиновых					
	кислотах. Хиральный дуализм					
	как инструмент иерархического					
	построения структур белков и					
	нуклеиновых кислот. Фолдинг.					
	Молекулярные машины					
	J 1					
2.6	Биофизика клетки.	Лек	4	4	Л3.2 Л3.1	
	Совокупность физических,					
	химических и биологических					
	критериев живого.					
2.7	Строение белков, нуклеиновых	Лек	4	4		
	кислот, липидов и					
	углеводов					
2.8	Строение белков, нуклеиновых	Пр	4	4		
	кислот, липидов и					
	углеводов					
2.9	Биосинтез белка. ДНК, РНК,	Лек	4	4		
	код, транскрипция, трансляция,					
0.10	рибосома	TT	4	4		
2.10	Биосинтез белка. ДНК, РНК,	Hp	4	4		
	код, транскрипция, трансляция,					
2.11	рибосома	Па	4	2		
2.11	Механохимические процессы. Мышечные и немышечные	11b	4	2		
	Мышечные и немышечные формы подвижности.					
	Структура сократительных					
	систем					
2.12	Механохимические процессы.	Лек	4	4		
	Мышечные и немышечные					
	формы подвижности.					
	Структура сократительных					
	систем					
	1					

0.10	Г 1	Т	4	4	
2.13	Биофизика мембран. Ленгмюровские монослои. Структура и физикохимические свойства биологических и искусственных мембран. Явления переноса, активный и пассивный транспорт ионов, сопряженный транспорт веществ. Насосы, каналы, переносчики. Осмотические и электрические явления, форма клетки, динамика мембран.		4	4	
2.14	Биофизика мембран. Ленгмюровские монослои. Структура и физикохимические свойства биологических и искусственных мембран. Явления переноса, активный и пассивный транспорт ионов, сопряженный транспорт веществ. Насосы, каналы, переносчики. Осмотические		4	4	
2.15	Распространение нервного импульса, синаптическая передача		4	2	
2.16	Распространение нервного импульса, синаптическая передача	Пр	4	4	
2.17	Физические основы преобразования и аккумуляции энергии в биологических системах.		4	2	
2.18	Физические основы преобразования и аккумуляции энергии в биологических системах.		4	4	
2.19	Самостоятельное изучение отдельных вопросов по теме "Физико-химические свойства биологических систем ".		4	24	

Список образовательных технологий

1	Активное слушание
2	Информационные (цифровые) технологии

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные материалы для проведения текущей аттестации

Для текущего контроля успеваемости по очной форме обучения преподавателем используется балльно-рейтинговая система контроля и оценки академической активности. Поэтому настоятельно рекомендуется тщательно прорабатывать материал дисциплины при самостоятельной работе, участвовать во всех формах обсуждения и взаимодействия, в целях лучшего освоения материала и получения высокой оценки по результатам освоения дисциплины.

Выполнение самостоятельной работы подразумевает самостоятельное изучение разделов дисциплины, подготовку к практическим работам, подготовку к рубежным контролям, подготовку к зачету.

Типовые задания для текущего контроля успеваемости

Варианты вопросов для подготовки к теоретической письменной контрольной работы

- 1. Предмет и задачи биофизики.
- 2. Разделы современной биофизики.
- 3. Термодинамические системы.
- 4. Закон сохранения энергии. Закон Гесса.
- 5. Второе начало термодинамики и биологические процессы.
- 6. Калориметрические методы в термодинамике биологических процессов.
- 7. Физические механизмы терморегуляции.
- 8. Структура клеточных мембран.
- 9. Методы выделения и изучения мембран.
- 10. Пассивные транспорт в мембранах.
- 11. Активный транспорт в мембранах.
- 12. Биоэлектрические потенциалы.
- 13. Уравнение Нернста.
- 14. Ионные механизмы генерации потенциалов действия.
- 15. Механизм синаптической передачи возбуждения.

Примеры тестовых заданий

- 1. Основное физическое назначение внутреннего уха -
- А) сбор и передача звука для его преобразования в нервный импульс Б)усиление звука
 - В) генерация звука с целью его преобразования в нервный импульс
- Г) преобразование с помощью кортиев органа (спиральный орган) звуковых колебаний в электрический сигнал
 - 2. Порог слышимости это...
- А) наименьшая частота звуков, при которой возникает едва различимые слуховые ощущения
- Б) наименьшая интенсивность звука, при которой возникает едва различимое слуховое ощущение
- В) наибольшая интенсивность звука, при которой прекращается слуховое восприятие звука
- Γ) наибольшая частота звука, при которой возникает едва различимое слуховое ощущение
 - 3. Слуховые косточки ...
 - А) усиливают звук, проходящий через среднее ухо
 - Б) преобразовывают звук в электрические импульсы
 - В) генерируют звуковые колебания
- Γ) осуществляют передачу звуковых колебаний из воздушной среды наружного уха во внутреннее ухо

- 4. Локализация источников звука основана главным образом на ...
- А) способности уха улавливать разность фаз звуковой волны в левом и правом ухе Б) способности уха улавливать разность частот звуковой волны в левом и правом ухе
- В) способности уха улавливать разность амплитуд звуковой волны в левом и правом ухе
 - 5. Почему у многих животных уши подвижны?
- А) Чтобы улавливать звуки, поступающие к ушам с разных сторон, и вовремя отреагировать на приближение других животных или человека.
- Б) ушная раковина это рупор, который способствует собиранию зву ков, улучшая слышимость и возможность животного вовремя отреагировать на опасность.
- В) Это позволяет более точно определить направление на источник звука не поворачивая головы и получить информацию об окружающей среде.
 - 6. Почему ночью звуки слышны лучше, чем днем?
- А)Скорость звука пропорциональна температуре воздуха, ночью температура у поверхности земли ниже, звуковая волна распространяется с большей скоростью в нижних слоях, и фронт звуковой волны отражается от земной поверхности Земли.
- Б) Ночью большое количество звуков отсутствует, поэтому любой звуковой сигнал слышится громче и лучше.
- В)Скорость распространения звука пропорциональна плотности вещества, ночью воздух становится более плотным из-за концентрации водяных паров, поэтому и звуки слышатся лучше.
- 7. Приспособление глаза к четкому видению различно удаленных предметов называют .
 - А) расстоянием наилучшего зрения
 - Б) аккомодацией
 - В) адсорбцией
 - Г) фильтрацией
 - 8. Аккомодация глаза происходит за счет:
 - А) изменение коэффициента преломления роговицы
 - Б) изменение коэффициента преломления хрусталика
 - В) изменение радиуса кривизны хрусталика
 - Г) изменения размеров глазного яблока
 - 9. Наиболее сильно преломляющая часть глаза это
 - А) роговица Б)склера
 - В) хрусталик
 - Г) конъюнктива
 - 10. Регуляция поступающего в глаз количество света осуществляется
 - А) зрачком
 - Б) веками
 - В) хрусталиком
 - Г)сетчаткой
 - 11. Оптическая система глаза человека формирует на сетчатке
 - А) мнимое, прямое изображение Б. не создает изображения
 - В) действительное, прямое изображение
 - Г) действительное, перевернутое изображение
 - 12. У взрослого человека расстояние наилучшего зрения составляет...
 - А) 50 см

- Б) 10 см
- В) 25 см
- Г) 1,5 м
- 15. Транспульмональное давление уравновешивается давлением, обусловленным упругими силами деформации легочной ткани и ...
 - А) поверхностным давлением, определяемым уравнением Лапласа
 - Б) осмотическим давлением
 - В) гидравлическим давлением
 - 16. Биологические структуры представляют собой
 - А) упругие системы
 - Б) вязкие системы
 - В) вязкоупругие системы

8.2. Оценочные материалы для проведения промежуточной аттестации

Вопросы к зачету

- І. Биофизика: объект исследования, цели, задачи, методы. Основные исторические этапы становления и развития дисциплины.
- 2. Изолированные, замкнутые, открытые термодинамические системы. 1 и 2 начала термодинамики.
- 3. Термодинамические потенциалы. Неравновесная термодинамика. Скорость продукции энтропии. Теорема Пригожина. Устойчивость стационарных состояний.
- 4. Теплообразование в организме теплокровных животных. Основной обмен. Условия теплообмена организма с окружающей средой. Регуляция температуры в живых организмах.
- 5. Клетка как структурная и функциональная единица живого организма. Единые принципы строения клеток.
- 6. Явления переноса, активный и пассивный транспорт ионов, сопряженный транспорт веществ. Насосы, каналы, переносчики. Осмотические и электрические явления, форма клетки, динамика мембран.
 - 7. Возбудимость, распространение нервного импульса, синаптическая передача.
- 8. Биоэлектрогенез. Эволюция представлений о механизме возникновения биоэлектрических потенциалов. Участие мембран в проведении нервных импульсов.
- 9. Механизм возникновения биоэлектрических потенциалов. Расчет мембранной разности потенциалов. Микроэлектроды и микроэлектродная техника.
- 10. Потенциал действия. Ионные механизмы генерации тока действия. Моделирование процессов нервного возбуждения.
- II. Строение глаза, как оптической системы. Ход лучей в оптической системе. Свет и его восприятие. Формирование изображения на сетчатке.
- 12. Разрешающая способность глаза. Трехкомпонентная теория цветового зрения. Кодирование информации в органе зрения.
- 13. Ухо как акустическая система. Восприятие звука. Этапы преобразования сигнала в органе слуха. Роль среднего уха в восприятии акустических раздражений.
- 14. Слуховой процесс во внутреннем ухе. Кодирование слуха в волокнах слухового нерва. Современные теории восприятия звука.
- 15. Общие принципы гидродинамики. Гемодинамика. Особенности кровообращения в различных участках сосудистого русла.
- 16. Сердце как насос. Ударный и минутный объемы сердца. Должные величины гемодинамики. Энергетика кровообращения.
- 17. Виды физических полей и их основные характеристики. Электромагнитные поля естественного и искусственного происхождения.
 - 18. Механизмы действия электромагнитного поля на биологические объекты.

Ультразвук и его биологическое действие. Явления кавитации. Взаимодействие ионизирующих излучений с биологическими объектами.

19. Тепловые поля и их влияние на биологические объекты.

8.3. Требования к рейтинг-контролю

Студенты, освоившие программу курса, могут получить зачет по итогам семестровой и полусеместровой рейтинговой аттестации согласно «Положению о рейтинговой системе обучения ТвГУ» (протокол №8 от 30 апреля 2020 г.). Если условия «Положения о рейтинговой системе …» не выполнены, то зачет сдается согласно «Положению о промежуточной аттестации (экзаменах и зачетах) обучающихся по программам высшего образования ТвГУ» (протокол №11 от 28 апреля 2021 г.)

Модуль 1

Работа в аудитории на практических занятиях (участие в дискуссии, доклады, решение задач) - 20 баллов.

Отчет о результатах самостоятельной работы - 10 баллов Контрольная работа - 10 балов

Модуль 2

Работа в аудитории на практических занятиях (участие в дискуссии, доклады, решение задач) - 20 баллов.

Отчет о результатах самостоятельной работы - 20 баллов Итоговая контрольная работа - 20 балов

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

9.1. Рекомендуемая литература

9.1.1. Основная литература

Шифр	Литература			
Л1.1	Каданцев, Биофизические основы живых систем, Москва: Юрайт, 2024, ISBN: 978-5			
	-534-14962-3,			
	URL: https://urait.ru/bcode/544409			
Л1.2	Бигдай Е. В., Вихров С. П., Гривенная Н. В., Редькин В. Н., Самойлов В. О., Чигирев			
	Б. И., Биомеханика, информация и регулирование в живых системах, Рязань: РГРТУ,			
	2021, ISBN: ,			
	URL: https://e.lanbook.com/book/168154			
Л1.3	Халилов Р. А., Джафарова А. М., Абдурахманов Р. Г., Термодинамика биологических			
	процессов, Махачкала: ДГУ, 2017, ISBN:,			
	URL: https://e.lanbook.com/book/158459			
Л1.4	Кутимская М. А., Физика и биофизика: Ч. 1, Иркутск: Иркутский ГАУ, 2013, ISBN: ,			
	URL: https://e.lanbook.com/book/156806			

9.1.2. Дополнительная литература

Шифр	Литература		
	Баженова И. А., Кузнецова Т. А., Основы молекулярной биологии. Теория и		
	рактика, Санкт-Петербург: Лань, 2022, ISBN: 978-5-507-44783-1,		
	URL: https://e.lanbook.com/book/242981		
Л2.2	Новиков А. А., Негров Д. А., Путинцев В. Ю., Мулюкова А. Р., Биофизика и		
	биоматериалы. Механика, Омск: ОмГТУ, 2017, ISBN: 978-5-8149-2514-5,		
	URL: https://e.lanbook.com/book/149062		

Л2.3	Новиков А. А., Седых Д. А., Негров Д. А., Путинцева А. Р., Биофизика и			
	биоматериалы. Акустика, оптика и электромагнетизм, Омск: ОмГТУ, 2019, ISBN:			
	978-5-8149-2950-1,			
	URL: https://e.lanbook.com/book/149061			
Л2.4	Кудряшов Ю. Б., Перов Ю. Ф., Рубин А. Б., Радиационная биофизика:			
	радиочастотные и микроволновые электромагнитные излучения, Москва:			
	Физматлит, 2008, ISBN: 978-5-9221-0848-5,			
	URL: https://biblioclub.ru/index.php?page=book&id=68420			
Л2.5	Кудряшов Ю. Б., Радиационная биофизика (ионизирующие излучения), Москва:			
	Физматлит, 2004, ISBN: 5-9221-0388-1,			
	URL: https://biblioclub.ru/index.php?page=book&id=69291			
Л2.6	Кудряшов Ю. Б., Рубин А. Б., Радиационная биофизика: сверхнизкочастотные			
	излучения, Москва: Физматлит, 2014, ISBN: 978-5-9221-1565-0,			
	URL: https://biblioclub.ru/index.php?page=book&id=275552			
Л2.7	Никиян А., Давыдова О., Биофизика: конспект лекций, Оренбург: Оренбургский			
	государственный университет, 2013, ISBN:,			
	URL: https://biblioclub.ru/index.php?page=book&id=259291			

9.1.3. Методические разработки

Шифр	Литература
Л3.1	, Экологическая биофизика клетки, Нальчик: КБГУ, 2018, ISBN: , URL: https://e.lanbook.com/book/170822
	Ермаков В. В., Биофизика клетки, Самара: СамГАУ, 2019, ISBN: , URL: https://e.lanbook.com/book/123503

9.3.1 Перечень программного обеспечения

1	Kaspersky Endpoint Security 10 для Windows
2	Adobe Acrobat Reader
3	Google Chrome
4	WinDjView
5	OpenOffice
6	Origin 8.1 Sr2
7	Многофункциональный редактор ONLYOFFICE

9.3.2 Современные профессиональные базы данных и информационные справочные системы

1	ЭБС ТвГУ
2	ЭБС ВООК.ru
3	ЭБС «Лань»
4	ЭБС IPRbooks
5	ЭБС «Университетская библиотека онлайн»
6	ЭБС «ЮРАИТ»
7	ЭБС «ZNANIUM.COM»

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Аудит-я	Оборудование
---------	--------------

комплект учебной мебели, экран настенный, переносной ноутбук, проекторы

11. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Примерные темы опроса на практике:

- 1. Предмет и задачи биофизики.
- 2. Первый и второй законы термодинамики.
- 3. Первый закон термодинамики и условие равновесия.
- 4. Превращение энергии в живой клетке.
- 5. Свободная энергия и электрохимический потенциал.
- 6. Второй закон термодинамики и живые организмы.
- 7. Особенности организмов как термодинамических систем.
- 8. Кинетика ферментативных процессов. Уравнение Михаэлиса Мэнтен.
- 9. Регуляция ферментативных реакций.
- 10. Открытая ферментная система с субстратным угнетением.
- 11. Колебания в ферментативных системах.
- 12. Миграция энергии и перенос электрона в биоструктурах.
- 13. Индуктивно-резонансный перенос, экситонный механизм переноса.
- 14. Миграция энергии и перенос электрона в биоструктурах.
- 15. Туннельный механизм переноса.
- 16. Механизмы ферментативного катализа.
- 17. Физико-химические особенности биомембран.
- 18. Перекисное окисление липидов.
- 19. Ионные равновесия.
- 20. Доннановское равновесие.
- 21. Пассивный транспорт веществ через мембрану.
- 22. Транспорт неэлектролитов.
- 23. Пассивный транспорт веществ через мембрану.
- 24. Транспорт ионов.
- 25. Активный транспорт веществ.
- 26. Ионные каналы.
- 27. Активный транспорт веществ

Примерные темы рефератов:

- 1) Энтропия и биосфера.
- 2) Типы объемных взаимодействий в макромолекулах.
- 3) Состояние воды в биополимерах. Гидрофобные взаимодействия.
- 4) Внутримолекулярная подвижность белков, функциональная роль.
- 5) Эволюция представлений о строении биомембран.
- 6) Состав мембраны. Типы взаимодействий и подвижность мембран.
- 7) Мембранный потенциал. Двойной электрический слой.
- 8) Хеморецепция. Восприятие вкуса и запаха.
- 9) Электронные переходы при поглощении света и люминесценция.
- 10) Основные фотохимические реакции. Световая и темновая стадии.
- 11) Физиологические эффекты ультрафиолетового излучения.