Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Павлова Людмила Станиславовна

Должность: и.о. проректора по образовательной деятельности

Дата подписания: 16.1 Министерство науки и высшего образования Российской Федерации

Уникальный программный ключ:

d1b168d67b4d7601372f8158b54ФТБОМоВО «Тверской государственный университет»

Утверждаю:

Руководитель ООП

матемальной дудаков киберне до 2023 г.

Рабочая программа дисциплины (с аннотацией)

ФИЗИКА

Направление подготовки 15.03.06 МЕХАТРОНИКА И РОБОТОТЕХНИКА

Профиль подготовки Интеллектуальное управление в мехатроннных и робототехнических системах

> Для студентов 2-го курса Формы обучения - очная

> > Составитель: к.ф-м.н. И.Л. Кислова

I. **Аннотация**

1. Цель и задачи дисциплины

Целью освоения дисциплины является:

создание целостной системы знаний в области естественных наук, формирующей физическую картину окружающего мира.

Задачами освоения дисциплины являются:

- развитие навыков построения моделей физических процессов;
- формирование способностей ставить и решать конкретные физические задачи различной степени сложности;
- развитие навыков использования математического аппарата для составления, анализа и решения конкретных физических задач;
- формирование физической картины природных процессов окружающего мира.

2. Место дисциплины в структуре ООП

Дисциплина относится к разделу «Мехатроника и робототехника» обязательной части Блока 1. Содержательная часть дисциплины направлена на формирование естественнонаучного подхода к анализу и решению практических задач в любой области знаний.

Для освоения данной дисциплины необходимо обладать знаниями в объеме школьного курса физики, а также знаниями основ математического анализа, алгебры и геометрии, дифференциальных уравнений, которые приобретаются студентами на 1-ом и 2-ом курсах.

3. Объем дисциплины: 2 зачетных единицы, 72 академических часа, **в том** числе:

контактная аудиторная работа: лекции 30 часов, практические занятия 15 часов, в т. ч. практическая подготовка 6 часов;

	контактная	внеаудиторная	работа:	контроль	самостоятельной	работы
0	, в том чи	исле курсовая рабо	ота0_	;		
	самостоятелі	ьная работа: 27 ч	асов, в то	м числе ко	нтроль 0.	

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения образовательной программы (формируемые компетенции)	Планируемые результаты обучения по дисциплине
ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в	ОПК-1.1 Обладает базовыми знаниями, полученными в области физики ОПК-1.2 Использует базовые знания в области физики в профессиональной деятельности, вносит некоторые коррективы при их использовании в профессиональной деятельности
профессиональной деятельности	
ОПК-4 Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	ОПК-4.3 Применяет средства современных информационных, компьютерных и сетевых технологий, прикладное программное обеспечение при моделировании электрических, гидравлических и пневматических приводов

- **5.** Форма промежуточной аттестации и семестр прохождения зачет, 3 семестр.
 - 6. Язык преподавания русский.

II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Учебная программа – наименование	Всего	Контактная работа (час.)			Самостояте
разделов и тем	(час.)	Лекции	Практическ	Контроль	льная
			ие занятия	самостоя	работа, в

			_		F	тельной	том числе
			в т.ч. практическая подготовка		в т.ч. практическая подготовка	работы (в том числе	Контроль
		2	в т.ч. рактическа подготовка	2	T. G.	TOM	(час.)
		всего	в т.ч. стиче пото	всего	в т.ч. ктичес пготор	писле	(ide.)
		B	aK!	B	В акт	числе	
			d i		дп	курсовая	
		_				работа)	
1. Введение.	2	2					
Материя и движение. Физика – наука,							
изучающая простейшие и наиболее							
общие свойства материи.							
Пространство и время как формы							
существования материи. Роль							
наблюдений, опыта и практики в							
физическом исследовании. Физика и							
математика. Физические явления и их							
математические модели. 4 этапа в							
развитии математической модели.							
Физические основы механики.							
Предмет и задачи механики. Ее место							
в курсе физики.							
2. Кинематика.	4	2		1			1
Основные понятия кинематики.	-			_			_
Скорость и ускорение материальной							
точки. Ускорение при криволинейном							
движении. Тангенциальное и							
нормальное ускорения. Вектора							
угловой скорости и углового							
ускорения и их связь с векторами							
линейной скорости и линейного							
ускорения. Сложное и относительное							
движения. Кинематика твердого тела.							
· · ·							
<u> </u>							
1 1 1							
мгновенной оси вращения.	5	2		1	1		2
3.Динамика.	3	2		1	1		2
Законы Ньютона. Сила и масса.							
Принцип относительности Галилея.							
Виды механических взаимодействий:							
тяготение, трение, взаимодействия,							
вызванные деформацией тел. Закон							
всемирного тяготения Ньютона.							
Гравитационная и инертная масса.							
Гравитационная постоянная и ее							
опытное определение.							
Неинерциальные системы отсчета и							
силы инерции. Проявление сил							
инерции, зависимость ускорения							
свободного падения на поверхность							
Земли от географической широты. Вес							
тела в неинерциальной системе							
отсчета. Перегрузки и невесомость.							
Твердое тело как система							
материальных точек. Теорема о							
движении центра масс и следствия из							
нее. Вращение твердого тела вокруг							

·					
неподвижной оси. Момент силы.					
Момент инерции. Уравнение					
моментов.	-		1	0.5	2
4. Законы сохранения в механике.	5	2	1	0,5	2
Импульс. Закон сохранения импульса.					
Момент импульса. Закон сохранения					
момента импульса. Тензор инерции.					
Главные оси инерции. Работа,					
энергия. Мощность. Кинетическая и					
потенциальная энергии. Работа сил					
тяготения. Потенциальная энергия тел					
в поле сил тяготения. Закон					
сохранения в механике. Упругий и					
неупругий удары шаров.					
Применение законов сохранения. Реактивное движение. Механика					
* *					
космических полетов. Гироскопический эффект. Гироскопы.					
Прецессия гироскопа. Уравнение					
Эйлера.					
5. Механические колебания и	5	2	1		2
волны.		_	1		
Основные понятия о колебательном					
движении. Гармонические колебания.					
Уравнения и графики смещения,					
скорости и ускорения при					
гармонических колебаниях. Энергия					
гармонического осциллятора.					
Затухающие колебания.					
Вынужденные колебания.					
Резонансные явления. Волновой					
процесс. Упругая волна. Поперечные					
и продольные волны. Волновая					
поверхность. Плоские и сферические					
волны. Скорость распространения					
волны. Частота и длина волны.					
Гармонические волны. Уравнение					
гармонической волны. Перенос					
энергии волной.					
6. Молекулярно-кинетическая	5	2	1	1	2
теория вещества (МКТВ) и					
основные понятия статистической					
физики.					
Основные представления.					
Термодинамический и статистический					
методы в физике. Твердое, жидкое,					
газообразное и плазменное состояние вещества. Модель идеального газа.					
Статистические закономерности					
поведения систем многих молекул и					
соответствующие математические					
модели. Основное уравнение					
кинетической теории газов. Средняя					
энергия движения молекул.					
Распределения энергии по степеням					
свободы. Абсолютная температура.					
Постоянная Больцмана. Важнейшие			 		

						1	1
следствия основного уравнения							
молекулярно-кинетической теории							
газов. Закон Дальтона. Уравнение							
Менделеева-Клапейрона.							
Статистическое толкование							
температуры и давления.							
Распределение Максвелла. Наиболее							
вероятная и средняя арифметическая							
скорости движения молекул. Закон							
Больцмана. Барометрическая							
формула. Средняя длина свободного							
пробега молекул. Явления переноса.							
7. Основы термодинамики.	5	2		1	0,5		2
Термодинамические параметры							
системы. Внутренняя энергия							
идеального газа. I закон							
термодинамики. Молекулярная							
теория теплоемкости газов.							
Применение І закона термодинамики							
к изопроцессам. Работа, совершаемая							
при изопроцессах. Адиабатический							
процесс.							
Обратимые и необратимые процессы.							
Циклы. Тепловые и холодильные							
машины. Цикл и теоремы Карно.							
Частные формулировки второго							
начала термодинамики. Энтропия как							
функция состояния. Вычисление							
энтропии, ее связь с							
термодинамической вероятностью							
состояния. Принцип и формула							
Больцмана. Статистический смысл							
второго начала термодинамики.							
Теоретико-информационный							
(кибернетический) смысл энтропии.							
Второе начало термодинамики и							
принцип причинности. Направленность времени. Метод							
*							
(метод характеристических функций Гиббса). Теорема Нернста. Понятие об							
* '							
температурах.	5	2		1			2
8. Электростатика.	3			1			2
Электрический заряд. Закон							
сохранения заряда. Электрическое							
поле. Полевая трактовка закона							
Кулона. Напряженность							
электростатического поля.							
Напряженность поля точечного							
заряда. Принцип суперпозиции полей.							
Линия и поток вектора напряженности							
электрического поля. Теорема							
Остроградского-Гаусса и ее							
применение для расчета							
электрических полей. Работа							
перемещения точечного заряда в							

			1			
электрическом поле. Потенциальная						
энергия точечного заряда в						
электрическом поле. Теорема о						
циркуляции вектора напряженности						
электростатического поля. Потенциал.						
Потенциал поля точечного заряда.						
Эквипотенциальные поверхности.						
Связь между вектором напряженности						
и потенциалом. Интегральные и						
дифференциальные уравнения						
электростатического поля. Уравнение						
Лапласа и Пуассона. Электрический						
диполь. Диэлектрики. Поляризация						
диэлектриков Векторы поляризации и						
электрической индукции. Теория						
поляризации полярных диэлектриков.						
Линейные и нелинейные диэлектрики.						
Электроемкость. Конденсаторы.						
Энергия электрического поля.						
9. Постоянный электрический ток.	5	2		1	1	2
Основные характеристики						
электрического тока.						
Электродвижущая сила. Закон Ома						
для участка и замкнутой цепи.						
Разветвление цепи. Правила						
Кирхгофа. Работа и мощность тока.						
Закон Джоуля-Ленца.						
Электропроводность твердых тел.						
Полупроводники.						
10. Магнетизм.	5	2		1		2
Магнитное поле стационарных токов.						
Закон Ампера. Закон Био-Савара-						
Лапласа. Напряженность магнитного						
поля. Векторы магнитной индукции.						
Теорема Гаусса для магнитных полей.						
Теорема о циркуляции вектора В.						
Дифференциальная форма закона						
полного тока. Магнитный момент						
электрического тока. Контур с током в						
магнитном поле. Работа, совершаемая						
при перемещении элемента тока в						
магнитном поле. Магнитное поле в						
веществе. Магнетики. Классификация						
магнетиков. Диа-, пара- и						
ферромагнетики.						
11. Электромагнитная индукция,	6	2		2	1	2
переменный ток и						
электромагнитные колебания.						
Явление электромагнитной индукции.						
Закон Фарадея. Самоиндукция и						
взаимоиндукция. Индуктивность.						
Энергия магнитного поля. Получение						
переменной эдс. R,L,С в цепи						
переменного тока. Метод						
комплексных амплитуд. Собственные						
электрические колебания контура.						
Затухающие свободные колебания.						

Гъ			ı	ı		
Вынужденные электрические						
колебания. Электрический резонанс.						
12. Система уравнений Максвелла и	5	2		1		2
электромагнитные волны.						
Ток смещения. Система уравнений						
Максвелла. Материальные уравнения						
среды. Волновое уравнение. Плоские						
электромагнитные волны.						
Поперечность световых волн.						
Скалярный и векторный потенциал.						
Закон сохранения энергии в						
электродинамике. Вектор Умова-						
Пойтинга. Энергия и импульс						
электромагнитного поля. Давление						
электромагнитных волн. Испускание						
электромагнитных волн. Стоячие						
электромагнитные волны.						
Сферические волны.						
Электромагнитное поле вдали от						
излучателя. Спектральное разложение						
излучения. Основы фотометрии.						
13. Распространение света в	5	2		1		2
изотропных средах.						
Плоские электромагнитные волны в						
изотропной среде. Дисперсия света.						
Методы наблюдения дисперсии.						
Классическая электронная теория						
дисперсии. Дисперсия в полярных						
кристаллах. Поворот направления						
линейной поляризации в магнитном						
поле (эффект Фарадея). Естественное						
вращение направления поляризации.						
Рассеяние света. Релеевское						
рассеяние. Цвет зари и неба.						
Комбинационное рассеяние света.						
Скорость света. Методы ее измерения.						
Фазовая и групповая скорости.						
Излучение Вавилова-Черенкова.						
14. Отражение и преломление света.	5	2		1		2
Геометрическая оптика.						
Законы отражения и преломления						
света. Формула Френеля. Явление						
полного внутреннего отражения.						
Отражение света от поверхности						
металла. Геометрическая оптика как						
предельный случай волновой оптики.						
Основные понятия геометрической						
оптики. Центрированная оптическая						
система. Построение изображения в						
оптических системах. Аберрация						
оптических систем.						
15. Интерференция и дифракция	5	2		1	1	2
света.	_	-			=	_
Интерференция монохроматического						
света. Опыты Юнга. Двухлучевая						
интерференция - метод давления						
волнового фронта и деление						
11 7		1	<u> </u>	·	L	

амплитуды. Локализация					
интерференционных полос.					
Интерференция от протяженных					
источников. Временная и					
пространственная когерентность.					
Применение явления интерференции.					
Двухлучевая и многолучевая					
интерференция.					
Принцип Гюйгенса-Френеля. Зоны					
Френеля. Дифракция Френеля на					
круговом отверстии, круглом экране,					
на прямолинейном крае экрана.					
Дифракция Фраунгофера.					
Дифракционная решетка.					
Разрешающая способность					
оптических приборов.					
ИТОГО	72	30	15	6	27

III. Образовательные технологии

Учебная программа — наименование разделов и тем (в строгом соответствии с разделом II РПД)	Вид занятия	Образовательные технологии
Введение	Лекции	1. Изложение теоретического материала
Кинематика	Лекции, практические занятия	Изложение теоретического материала Решение задач
Динамика	Лекции, практические занятия	Изложение теоретического материала Решение задач
Законы сохранения в механике	Лекции, практические занятия	 Изложение теоретического материала Решение задач
Механические колебания и волны	Лекции, практические занятия	Изложение теоретического материала Решение задач
МК теория вещества	Лекции, практические занятия	Изложение теоретического материала Решение задач
Основы термодинамики	Лекции, практические занятия	Изложение теоретического материала Решение задач
Электростатика	Лекции, практические занятия	Изложение теоретического материала Решение задач

Постоянный электрический ток	Лекции, занятия	практические	 Изложение теоретического материала Решение задач
Магнетизм	Лекции, занятия	практические	 Изложение теоретического материала Решение задач
Электромагнитаная индукция, переменный ток и электромагнитные колебания	Лекции, занятия	практические	 Изложение теоретического материала Решение задач
Система уравнений Максвелла и электромагнитные волны	Лекции, занятия	практические	 Изложение теоретического материала Решение задач
Распространение света в изотропных средах	Лекции, занятия	практические	Изложение теоретического материала Решение задач
Отражение и преломление света. Геометрическая оптика.	Лекции, занятия	практические	Изложение теоретического материала Решение задач
Интерференция и дифракция света.	Лекции, занятия	практические	1.Изложение теоретического материала 2.Решение задач

Преподавание учебной дисциплины строится на сочетании лекций, практических занятий и различных форм самостоятельной работы студентов. В процессе освоения дисциплины используются следующие образовательные технологии, способы и методы формирования компетенций: традиционные лекции, практические занятия в диалоговом режиме, выполнение индивидуальных заданий в рамках самостоятельной работы.

Дисциплина предусматривает выполнение контрольных работ, письменных домашних заданий.

IV. Учебно-методическое и информационное обеспечение дисциплины

1. Рекомендованная литература

- а) основная литература:
- 1. Никеров, В.А. Физика для вузов: механика и молекулярная физика: учебник / В.А. Никеров. М.: Издательско-торговая корпорация «Дашков и К°», 2017. 136 с.: табл., граф., схем. ISBN 978-5-394-00691-3; [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=450772
- 2. Общий курс физики: Учебное пособие для вузов: В 5 томах Том 1: Механика / Сивухин Д.В., 6-е изд., стер. М.:ФИЗМАТЛИТ, 2014. 560 с.:

- 60х90 1/16 (Переплёт) ISBN 978-5-9221-1512-4 .- Режим доступа: http://znanium.com/go.php?id=470189
- 3. Физика: учебник / В.И. Демидченко, И.В. Демидченко. 6-е изд., перераб. и доп. М.: ИНФРА-М, 2018. 581 с. + Доп. материалы [Электронный ресурс]. (Высшее образование: Бакалавриат).- Режим доступа: http://znanium.com/go.php?id=927200

б) дополнительная литература:

- 1. Кудин, Л.С. Курс общей физики (в вопросах и задачах) [Электронный ресурс] : учеб. пособие / Л.С. Кудин, Г.Г. Бурдуковская. Электрон. дан. Санкт-Петербург: Лань, 2013. 320 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=5843
- 2. Кузнецов, С.И. Курс физики с примерами решения задач : учебное пособие / С.И. Кузнецов. 4-е изд., перераб. и доп. Санкт-Петербург : Лань, [б. г.]. Часть II : Электричество и магнетизм. Колебания и волны 2014. 416 с. ISBN 978-5-8114-1718-6. Текст : электронный // Электронно-библиотечная система «Лань» : [сайт]. URL: https://e.lanbook.com/book/53682

2.Программное обеспечение

Компьютерный класс факультета прикладной математики и кибернетики № 46 (170002, Тверская обл., г.Тверь, Садовый переулок, д.35)							
Adobe Acrobat Reader DC - Russian	бесплатно						
Apache Tomcat 8.0.27	бесплатно						
Cadence SPB/OrCAD 16.6	Государственный контракт на поставку лицензионных программных продуктов 103 - ГК/09 от 15.06.2009						
GlassFish Server Open Source Edition 4.1.1	бесплатно						
Google Chrome	бесплатно						
Java SE Development Kit 8 Update 45 (64-bit)	бесплатно						
JetBrains PyCharm Community Edition 4.5.3	бесплатно						
JetBrains PyCharm Edu 3.0	бесплатно						
Kaspersky Endpoint Security 10 для Windows	Акт на передачу прав ПК545 от 16.12.2022						
Lazarus 1.4.0	бесплатно						
Mathcad 15 M010	Акт предоставления прав ИС00000027 от 16.09.2011						
MATLAB R2012b	Акт предоставления прав № Us000311 от 25.09.2012						
Многофункциональный редактор ONLYOFFICE бесплатное ПО	бесплатно						
OC Linux Ubuntu бесплатное ПО	бесплатно						

MiKTeX 2.9	бесплатно
MSXML 4.0 SP2 Parser and SDK	бесплатно
NetBeans IDE 8.0.2	бесплатно
NetBeans IDE 8.2	бесплатно
Notepad++	бесплатно
Oracle VM VirtualBox 5.0.2	бесплатно
Origin 8.1 Sr2	договор №13918/М41 от 24.09.2009 с ЗАО
Oligiii 6.1 Si2	«СофтЛайн Трейд»
Python 3.1 pygame-1.9.1	бесплатно
Python 3.4 numpy-1.9.2	бесплатно
Python 3.4.3	бесплатно
Python 3.5.1 (Anaconda3 2.5.0 64-bit)	бесплатно
WCF RIA Services V1.0 SP2	бесплатно
WinDjView 2.1	бесплатно
R Studio	бесплатно
Anaconda3 2019.07 (Python 3.7.3 64-bit)	бесплатно

- 3) Современные профессиональные базы данных и информационные справочные системы
- 1. 96C «ZNANIUM.COM» www.znanium.com;
- 2. ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/;
- 3. ЭБС «Лань» http://e.lanbook.com.
- 4) Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины Интернет-университет http://www.intuit.ru

V. Методические материалы для обучающихся по освоению дисциплины

Проводятся 2 контрольных мероприятия, распределение баллов между которыми составляет 40 и 60. Контрольные работы проводятся в письменной форме.

1) Планы практических занятий и методические рекомендации к ним. Практические занятия включают в себя обсуждение вопросов по каждому разделу курса и решение задач по теме занятия. Примеры задач приведены в разделе V.

Тема 1. Кинематика.

Вопросы для обсуждения:

- 1. Понятие скорости и ускорения материальной точки.
- 2. Кинематика прямолинейного движения.
- 3. Ускорение при криволинейном движении. Тангенциальное и нормальное ускорения.
- 4. Кинематика вращательного движения.
- 5. Поступательное и вращательное движение твердого тела.

Тема 2. Динамика

Вопросы для обсуждения:

- 1. Законы Ньютона. Сила и масса. Принцип относительности Галилея.
- 2. Динамика прямолинейного движения, основное уравнение динамики.
- 3. Неинерциальные системы отсчета и силы инерции. Проявление сил инерции.
- 4. Твердое тело как система материальных точек. Теорема о движении центра масс и следствия из нее.
- 5. Динамика вращательного движения тела. Момент силы. Момент инерции. Уравнение моментов.

Тема 3. Законы сохранения в механике.

Вопросы для обсуждения:

- 1. Импульс. Закон сохранения импульса.
- 2. Момент импульса. Закон сохранения момента импульса. Тензор инерции.
- 3. Работа, энергия. Мощность. Кинетическая и потенциальная энергии. Работа сил тяготения. Потенциальная энергия тел в поле сил тяготения.
- 4. Закон сохранения в механике. Применение законов сохранения.

Тема 4. Механические колебания и волны.

Вопросы для обсуждения:

- 1. Гармонические колебания: уравнения и графики смещения, скорости и ускорения. Энергия гармонического осциллятора.
- 2. Затухающие колебания. Вынужденные колебания. Резонансные явления.
- 3. Упругая волна. Волновая поверхность. Плоские и сферические волны. Гармонические волны. Уравнение гармонической волны. Перенос энергии волной.

Тема 5. Молекулярно-кинетическая теория вещества Вопросы для обсуждения:

- 1. Основные положения МКТ. Твердое, жидкое, газообразное и плазменное состояние вещества.
- 2. Модель идеального газа. Основное уравнение кинетической теории газов. Средняя энергия движения молекул. Распределения энергии по степеням свободы. Абсолютная температура.
- 3. Важнейшие следствия основного уравнения молекулярно-кинетической теории газов. Закон Дальтона. Уравнение Менделеева-Клапейрона.
- 4. Статистическое толкование температуры и давления. Распределение Максвелла. Наиболее вероятная и средняя арифметическая скорости движения молекул. Закон Большмана.

Тема 6. Основы термодинамики

Вопросы для обсуждения:

1. Термодинамические параметры системы. Внутренняя энергия идеального газа. Работа в термодинамике. Количество теплоты.

- 2. І закон термодинамики. Применение І закона термодинамики к изопроцессам. Работа, совершаемая при изопроцессах. Адиабатический процесс.
- 3. Обратимые и необратимые процессы. Циклы. Тепловые и холодильные машины. Цикл и теоремы Карно. Частные формулировки второго начала термодинамики.
- 4. Энтропия как функция состояния. Вычисление энтропии, ее связь с термодинамической вероятностью состояния. Статистический смысл второго начала термодинамики.

Тема 7. Электростатика.

Вопросы для обсуждения:

- 1. Закон сохранения заряда. Закона Кулона для точечных зарядов. Закон Кулона для системы зарядов.
- 2. Напряженность электростатического поля. Принцип суперпозиции электрических полей. Теорема Остроградского-Гаусса и ее применение для расчета электрических полей.
- 3. Работа по перемещению заряда в электрическом поле. Потенциальная энергия, потенциал. Связь между вектором напряженности и потенциалом.
- 4. Теорема о циркуляции вектора напряженности электростатического поля. Интегральные и дифференциальные уравнения электростатического поля.
- 5. Электроемкость. Конденсаторы. Энергия электрического поля.

Тема 8. Постоянный электрический ток

Вопросы для обсуждения:

- 1. Сила тока. Сопротивление и проводимость. Закон Ома в интегральной и дифференциальной форме.
- 2. Электродвижущая сила. Закон Ома для участка и замкнутой цепи.
- 3. Разветвление цепи. Правила Кирхгофа.
- 4. Работа и мощность тока. Закон Джоуля-Ленца в интегральной и дифференциальной форме.

Тема 9. Магнетизм

Вопросы для обсуждения:

- 1. Магнитное поле стационарных токов. Закон Ампера. Закон Био-Савара-Лапласа.
- 2. Напряженность магнитного поля. Векторы магнитной индукции и намгниченности. Теорема Гаусса для магнитных полей.
- 3. Теорема о циркуляции вектора магнитной индукции. Дифференциальная форма закона полного тока. Магнитный момент электрического тока. Контур с током в магнитном поле.
- 4. Магнитное поле в веществе. Магнетики. Классификация магнетиков. Диа-, пара- и ферромагнетики.

Teма 10. Электромагнитная индукция, переменный ток и электромагнитные колебания

Вопросы для обсуждения:

- 1. Явление электромагнитной индукции. Закон Фарадея. Самоиндукция и взаимоиндукция.
- 2. Получение переменного тока. R,L,С в цепи переменного тока. Метод комплексных амплитуд. Импеданс. Мощность в цепи переменного тока.
- 3. Собственные электрические колебания контура. Затухающие свободные колебания. Вынужденные электрические колебания. Электрический резонанс.

Тема 11. Система уравнений Максвелла и электромагнитные волны Вопросы для обсуждения:

- 1. Ток смещения. Система уравнений Максвелла. Материальные уравнения среды.
- 2. Закон сохранения энергии в электродинамике. Вектор Умова-Пойтинга. Энергия и импульс электромагнитного поля. Давление электромагнитных волн.
- 3. Испускание электромагнитных волн. Стоячие электромагнитные волны. Сферические волны. Электромагнитное поле вдали от излучателя.
- 4. Спектральное разложение излучения. Основы фотометрии.

Тема 12. Распространение света в изотропных средах Вопросы для обсуждения:

- 1. Дисперсия света. Методы наблюдения дисперсии. Классическая электронная теория дисперсии. Дисперсия в полярных кристаллах.
- 2. Поворот направления линейной поляризации в магнитном поле (эффект Фарадея). Естественное вращение направления поляризации.
- 3. Рассеяние света. Релеевское рассеяние. Комбинационное рассеяние света. Скорость света. Фазовая и групповая скорости. Излучение Вавилова-Черенкова.

Тема 13. Отражение и преломление света. Геометрическая оптика. Вопросы для обсуждения:

- 1. Законы отражения и преломления света. Формулы Френеля. Явление полного внутреннего отражения. Отражение света от поверхности металла.
- 2. Геометрическая оптика как предельный случай волновой оптики. Основные понятия геометрической оптики.
- 3. Центрированная оптическая система. Построение изображения в оптических системах. Аберрация оптических систем.

Тема 14. Интерференция и дифракция света Вопросы для обсуждения:

- 1. Интерференция монохроматического света. Двухлучевая интерференция метод давления волнового фронта и деление амплитуды. Локализация интерференционных полос. Многолучевая интерференция.
- 2. І закон термодинамики. Применение І закона термодинамики к изопроцессам. Работа, совершаемая при изопроцессах. Адиабатический процесс.
- 3. Принцип Гюйгенса-Френеля. Зоны Френеля. Дифракция Френеля на круговом отверстии, круглом экране, на прямолинейном крае экрана. Дифракция Фраунгофера.
- 4. Дифракционная решетка. Разрешающая способность оптических приборов.

Тема 15. Термодинамика излучения. Световые кванты Вопросы для обсуждения:

- 1. Тепловое излучение в замкнутой плоскости. Черное тело. Спектральная плотность равновесного излучения. Закон Кирхгоффа. Закон Стефана-Больцмана. Правило смещения Вина.
- 2. Формула Планка. Световые кванты.
- 3. Внешний фотоэффект. Энергия и импульс фотона. Уравнение Эйнштейна для фотоэффекта. Дуализм света.
- 4. Спонтанное и вынужденное излучение. Коэффициенты Эйнштейна. Оптические усилители. Условия усиления.

2) Методические рекомендации по организации самостоятельной работы студентов:

Самостоятельная работа студентов предполагает:

- -обязательное выполнение домашних заданий, предусмотренных практическими занятиями;
- -углубленное изучение литературы и решение задач по пройденным темам и по вопросам, дополнительно указанным преподавателем;
- –использование материалов рабочей программы для систематизации знаний и подготовке к занятиям и контрольным работам.

3) Требования к рейтинг-контролю

Результаты промежуточной аттестации выставляются на основе текущего контроля успеваемости (рейтинг-контроль, баллы за выполненные практические задания суммируются) и по результатам зачета.

Рейтинг

- <u>1. Первая контрольная точка.</u> Содержание модуля 1: Раздел 1 6.
- 40 баллов, из них 15 текущая работа, 5 посещаемость, 20 контрольная работа. 9-ая неделя.
- 2. Вторая контрольная точка. Содержание модуля 2: Раздел 7 15.
- 60 баллов, из них 25 текущая работа, 5 посещаемость, 30 контрольная работа. 18-ая неделя

<u>Критерии</u>: работа на практическом занятии -5 баллов, правильный ответ на один вопрос контрольной работы -3 балла. 10 баллов - доклад на семинаре или написанный реферат (текущая работа).

Программой предусматривается выполнение письменных контрольных работ в качестве форм рубежного контроля в конце каждого модуля. Для подготовки к рубежному контролю предполагается выполнение домашних заданий по каждой пройденной в течение модуля теме и использование банка контрольных вопросов и заданий рабочей программы.

Важной составляющей данного раздела РПД являются требования к рейтинг-контролю с указанием баллов, распределенных между модулями и видами работы обучающихся.

Максимальная сумма баллов по учебной дисциплине, заканчивающейся зачетом, по итогам семестра составляет 100 баллов (50 баллов - 1-й модуль и 50 баллов - 2-й модуль).

Студенту, набравшему 40 баллов и выше по итогам работы в семестре, в экзаменационной ведомости и зачетной книжке выставляется оценка «зачтено». Студент, набравший до 39 баллов включительно, сдает зачет.

Распределение баллов по модулям устанавливается преподавателем и может корректироваться.

VI. Материально-техническое обеспечение

Для аудиторной работы.

Учебная аудитория №	Набор учебной мебели, экран, комплект	
304	аудиотехники (радиосистема, стационарный	
(170002, Тверская обл.,	микрофон с настольным держателем, усилитель,	
г.Тверь, Садовый	микшер, акустическая система), проектор,	
переулок, д.35)	ноутбук.	
Учебная аудитория №	Набор учебной мебели, экран,	
205	проектор.	
(170002, Тверская обл.,		
г.Тверь, Садовый		
переулок, д.35)		

Для самостоятельной работы

Помещение	для	самостоятельной	работы	Компьютер,	экран,
обучающихся	•			проектор,	
Компьютерный класс факультета ПМ и К				кондиционер.	
№ 46					
(170002, Тверская обл., г.Тверь, Садовый переулок,					
д.35)					

VII. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел рабочей программы дисциплины	Описание внесенных изменений	Дата и протокол заседания кафедры, утвердившего изменения
1	IV. Учебно-методическое и информационное обеспечение дисциплины 2) Программное обеспечение	Внесены изменения в программное обеспечение	От 24.08.2023 года, протокол № 1 ученого совета факультета
2			