Документ подписан промильность в Рисство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио ректора БОУ ВО «ТВЕРС КОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» дата подписания: 22.07.2025 17:22:56

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Е.М. Семенова

июня

2025 г.

Рабочая программа дисциплины

Дифференциальные уравнения

Закреплена за

Физики конденсированного состояния

кафедрой:

Направление 03.03.02 Физика

подготовки:

Направленность Физика, технологии и компьютерное моделирование

(профиль): функциональных материалов

Квалификация: Бакалавр

Форма обучения: очная

Семестр: 4

Программу составил(и):

канд. физ.-мат. наук, доц., Кузнецова Юлия Васильевна

Тверь, 2025

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели освоения дисциплины (модуля):

Целью освоения дисциплины «Дифференциальные уравнения» является получение знаний по методам решения обыкновенных дифференциальных уравнений, необходимых для освоения ООП и последующей профессиональной деятельности.

Задачи:

Задачами освоения дисциплины являются:

приобретение знаний и навыков решения задач по следующим разделам: простейшие дифференциальные уравнения, линейные дифференциальные уравнения высших порядков и линейные системы дифференциальных уравнений с постоянными коэффициентами, уравнения в частных производных первого порядка.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Цикл (раздел) ОП: Б1.О

Требования к предварительной подготовке обучающегося:

Для освоения дисциплины от слушателей требуются следующие предварительные знания и навыки из курсов математического анализа и линейной алгебры: дифференцирование и интегрирование функций одной переменной, свойства определенных интегралов, вычисление и свойства частных производных и дифференциалов функций многих переменных первого и высших порядков, алгебраические операции над матрицами, вычисление собственных чисел и собственных векторов квадратных матриц, общие свойства линейных пространств и линейных операторов.

Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

«Линейная алгебра и аналитическая геометрия» и «Математический анализ»

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость	5 3ET
Часов по учебному плану	180
в том числе:	
аудиторные занятия	64
самостоятельная работа	69
часов на контроль	27

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-1.1: Анализирует физические объекты и процессы с применением базовых знаний в области физико-математичекских наук

> Уровень 1 .Анализ задачи, выделяя ее базовые составляющие

Определять, интерпретировать и ранжировать информацию, Уровень 1 требуемую для решения поставленной задачи.

системным подходом для решения поставленных задач Уровень 1

ОПК-1.2: Применяет знания в области физико-математических наук при решении практических задач в сфере профессиональной деятельности

> Уровень 1 математический аппарат для вычисления производной функции, функции двух переменных, частных производных, а так же методы интегрирование функций.

Применять методы решения дифференциальных уравнений Уровень 1

- Уровень 1 возможными вариантами решения дифференциальных уравнений, оценивая их достоинства и недостатки, применяя системный подход для решения поставленных задач
- УК-1.1: Анализирует задачу, выделяя ее базовые составляющие
- УК-1.2: Определяет, интерпретирует и ранжирует информацию, требуемую для решения поставленной задачи
- УК-1.5: Рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки

5. ВИДЫ КОНТРОЛЯ

Виды контроля	в семестрах	α:
экзамены		4

6. ЯЗЫК ПРЕПОДАВАНИЯ

Язык преподавания: русский.

7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код занят.	Наименование разделов и тем	Вид занятия	Семестр / Курс	Часов	Источ- ники	Примечан- ие
	Раздел 1. Дифференциальные уравнения первого порядка					
1.1	1. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенные относительно производной.	Лек	4	1	91	
1.2	1. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенные относительно производной.	Пр	4	2	Э1	
1.3	Особые решения	Ср	4	5	Э1	
1.4	2. Вопросы существования решений уравнений первого порядка, разрешенного относительно производной	Лек	4	1	Э2	
1.5	2. Вопросы существования решений уравнений первого порядка, разрешенного относительно производной	Пр	4	1	Э1	
1.6	Вопросы существования решений уравнений первого порядка, разрешенного относительно производной	Ср	4	5	Э1	
1.7	Линейные уравнения первого порядка	Лек	4	2		
1.8	Линейные уравнения первого порядка	Пр	4	6		
1.9	Линейные уравнения первого порядка	Ср	4	9	Э1	

	oz Frishka Fr ir komii. Modesi, dyriki, enerem 202 i.pr	1			
1.10	3. Уравнения первого порядка,	Лек	4	1	
	не разрешенные относительно				31
	производной				
1 1 1	* *	П	4		
1.11	Уравнения в полных	Лек	4	3	
	дифференциалах				
1.12	3. Уравнения первого порядка,	Пр	4	6	
	не разрешенные относительно	1			31
	производной				
1.10	*		4	10	
1.13	Уравнения, не разрешенные	Ср	4	10	
	относительно прозводной				Э1
1.14	Уравнения в частных	Ср	4	10	
	производных первого порядка	_			Э1
1.15	Особые точки. Фазовая	Cn	4	10	31
1.13		СР		10	0.1
	плоскость				91
	Раздел 2. Дифференциальные				
	уравнения высших порядков				
2.1	Дифференциальные уравнения	Лек	4	2	
	высших порядков				Э1
2.2	•	П.,	1	_	51
2.2	Дифференциальные уравнения	11p	4	5	
	высших порядков				Э1
2.3	Общая теория линейных	Лек	4	1	
	дифференциальных уравнений				Э1
2.4	Общая теория линейных	Пр	4	6	31
2.4	<u>-</u>	11p		U	0.1
	дифференциальных уравнений	~	<u> </u>	<u> </u>	Э1
2.5	Общая теория линейных	Ср	4	5	
	дифференциальных уравнений				91
2.6	Частные виды линейных	Лек	4	2	
	дифференциальных уравнений				31
2.7	Частные виды линейных	По	4	6	31
2.7	F 3	11p	4	O	
	дифференциальных уравнений				Э1
2.8	Системы обыкновенных	Лек	4	2	
	дифференциальных уравнений.				91 92
2.9	Системы обыкновенных	Пр	4	6	
	дифференциальных уравнений.	1-	[-		Э1
2.10	111	Пот	1	1	
2.10	Уравнения в частных	Лек	4	1	[
	производных первого порядка				Э1
2.11	Уравнения в частных	Пр	4	6	
	производных первого порядка	_			91
2.12	Краевые задачи	Пр	4	4	
2.12	трасове задачи	11p	-	-	
	**		1	1.0	91
2.13	Уравнения в частных	Ср	4	10	
	производных первого порядка				91
2.14	Краевые задачи. Устойчивость	Ср	4	5	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1			Э1
2.15		Drange	1	27	
2.15		Экзамен	4	21	

Список образовательных технологий

1	Активное слушание
---	-------------------

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И

ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные материалы для проведения текущей аттестации

Залание:

№1 Найти интегрирующий множитель и решить уравнение:

 $(2xy^2-3y^3)dx+(7-3xy^2)dy=0, \square=\square(x)$

Планируемый результат: найден интегрирующий множитель, получено необходимое и достаточное условие существования уравнения в полных дифференциалах, решено уравнение.

№2 Решить уравнение Эйлера: $x2y''-xy'+2y = x \ln x$

Планируемый результат: Правильно применена подстановка, с помощью которой уравнение сведено к линейному уравнению с постоянными коэффициентами. Решено полученное уравнение, правильно записан ответ.

№3 Решить линейное дифференциальное уравнение с постоянными коэффициентами: у///+2у//+у/=0

Планируемый результат: Правильно составлено характеристическое уравнение, найдены его корни и верно записано решение.

8.2. Оценочные материалы для проведения промежуточной аттестации

ПРИМЕР ЗАДАНИЯ:

№1

(x3+xy2)dx+(x2y+y3)dy

 N_{0}

 $(x+y2)dx-2xydy=0, \square=\square(x)$

№3

 $y = \exp(y//y)$

№4

y//=1+y/2

№5

y=2xy/+lny/

№6

y///-2y//-3y/=0

№7

Решить уравнение Эйлера

x2y//-xy/+2y=xlnx

№8

Проинтегрировать методом вариации постоянных следующие уравнения:

y//+y=1/sinx

 N_09

Определить вид частного решения следующего ЛНДУ:

 $y//-y=x+\sin x$

8.3. Требования к рейтинг-контролю

Шкала оценивания за весь семестр: Максимальная возможная оценка за модуль составляет 30 баллов. Она складывается из оценки за контрольную работу (максимум 16 баллов), за задания для практических занятий (максимум 10 баллов), за самостоятельную работу студентов и выполнение письменных домашних заданий (4 балла). Итого семестр: 60 баллов.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

9.1. Рекомендуемая литература

9.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"

Э1		
Э2	:	

9.3.1 Перечень программного обеспечения

9.3.2 Современные профессиональные базы данных и информационные справочные системы

1	ЭБС «ЮРАИТ»
2	ЭБС «Университетская библиотека онлайн»
3	ЭБС «Лань»
4	ЭБС ТвГУ

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Аудит-я	Оборудование
3-218	комплект учебной мебели, переносной ноутбук, проектор, экран

11. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1) Рекомендуемая литература
- а) Основная литература:
- 1. Демидович Б. П. Дифференциальные уравнения [Электронный ресурс]: учеб. пособие / Б. П. Демидович, В. П. Моденов; Демидович Б. П., Моденов В. П. 4-е изд., стер. Санкт-Петербург: Лань, 2019. 280 с. Режим доступа: https://e.lanbook.com/book/115196
- 2. Бибиков Ю. Н. Курс обыкновенных дифференциальных уравнений [Электронный ресурс] : учеб. пособие. Санкт-Петербург: Лань, 2011. 304 с. Режим доступа: https://e.lanbook.com/book/1542.
- 3. Шестакова Е.Г. Дифференциальные уравнения первого порядка: учебнометодическое пособие по дисциплине "Дифференциальные уравнения" [Электронный ресурс]: Тверь: Тверской государственный университет, 2021. Режим доступа: http://megapro.tversu.ru/megaPro/UserEntry?Action=FindDocs&ids=5030757
- 4. Щербакова Ю. В. Дифференциальные уравнения [Электронный ресурс] : Учебное пособие / Ю. В. Щербакова; Ю. В. Щербакова. Дифференциальные уравнения. Саратов : Научная книга, 2019. 159 с. Режим доступа: http://www.iprbookshop.ru/81007.html
 - б) дополнительная литература:
- 1. Пантелеев А. В. Обыкновенные дифференциальные уравнения. Практикум М.: НИЦ ИНФРА-М, 2016. 432 с. -Электронный ресурс.- Режим доступа: http://znanium.com/catalog.php?bookinfo=549273
- 2. Бибиков Ю. Н.Дифференциальные уравнения Пфаффа на плоскости и в пространстве [Электронный ресурс] : учебное пособие / Ю. Н. Бибиков, В. Р. Букаты; Бибиков Ю. Н., Букаты В. Р. Санкт-Петербург : Лань, 2020. 68 с. Электронный ресурс.-

Режим доступа: https://e.lanbook.com/book/126903

Методические материалы для обучающихся по освоению дисциплины

1) Вопросы для подготовки к экзамену:

- 1. Дифференциальные уравнения (ДУ) первого порядка. Основные понятия. Интегральные кривые. Задача Коши. Физические и геометрические задачи, приводящие к дифференциальным уравнениям.
 - 2. Уравнения с разделяющимися переменными и приводящиеся к ним.
 - 3. Однородные уравнения и приводящиеся к ним.
 - 4. Линейные уравнения 1-го порядка и приводящиеся к ним. Примеры.
- 5. Теорема об общем решении линейного дифференциального уравнения первого порядка. Метод вариации постоянных.
- 6. Уравнения в полных дифференциалах. Признак уравнения в полных дифференциалах. Интегрирующий множитель.
- 7. Дифференциальные уравнения первого порядка, не разрешенные относительно производной. Метод введения параметров. Уравнение Лагранжа. Уравнение Клеро.
- 8. Дифференциальные уравнения n-го порядка. Основные понятия и определения. Уравнения высших порядков, допускающие понижение порядка. Примеры.
 - 9. Линейные дифференциальные уравнения. Линейный дифференциальный оператор.
- 10. Линейные однородные дифференциальные уравнения высших порядков. Свойства их решений.
- 11. Определитель Вронского. Теорема об определителе Вронского (необходимое условие линейной зависимости системы функций). Условие линейной независимости решений линейного однородного уравнения.
 - 12. Линейные однородные уравнения с постоянными коэффициентами.
 - 13. Линейные неоднородные уравнения. Структура общего решения.
- 14. Метод Лагранжа вариации произвольных постоянных как метод нахождения частного решения линейного неоднородного дифференциального уравнения.
- 15. Линейные неоднородные дифференциальные уравнения с правой частью специального вида. Уравнения, приводящиеся к уравнениям с постоянными коэффициентами.
 - 16. Системы линейных Д.У. с постоянными коэффициентами.
- 17. Интегрирование систем Д.У. Приближенные методы интегрирования уравнений 1-ого порядка и систем уравнений.
 - 18. Особые точки дифференциального уравнения и системы ДУ.
 - 19. Уравнения в частных производных первого порядка

2) Вопросы для самостоятельного изучения

- 1. Изоклины. Составление дифференциального уравнения семейства кривых.
- 2. Геометрические и физические задачи.
- 3. Однородные уравнения.
- 4. Линейные уравнения.
- 5. Особые точки.
- 6. Интегрирующий множитель в уравнениях в полных дифференциалах.
- 7. Общий метод введения параметра.
- 8. Уравнения Лагранжа и Клеро.
- 9. Особые решения. Задача о траекториях.
- 10. Типы уравнений п-го порядка, разрешаемые в квадратурах.
- 11. Уравнения, допускающие понижение порядка.
- 12. Уравнения, левая часть которых является точной производной.
- 13. Неоднородные линейные уравнения. Сопряженное уравнение.
- 14. Существование производных по начальным значениям от решений системы.
- 15. Первые интегралы системы обыкновенных дифференциальных уравнений.
- 16. Симметричная форма системы дифференциальных уравнений.
- 17. Устойчивость по Ляпунову.
- 18. Фазовая плоскость

- 19. Теорема об устойчивости по первому приближению.
- 20. Приближенные методы интегрирования уравнений 1-ого порядка и систем уравнений.
- 21. Применение линейных дифференциальных уравнений в изучении колебательных явлений
- 22. Простейшие типы точек покоя.
- 23. Геометрический критерий устойчивости