Документ подписан проминний териство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ

Информация о владельце: ФИО: Смирнов Сергей Николаевич РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: врио ректора БОУ ВО «ТВЕРСКОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» дата подписания: 22.07.2024 16:03:28

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Б.Б.Педько

«21»

мая 2024 г.

Рабочая программа дисциплины

ОБЩАЯ ФИЗИКА Физический практикум по атомной физике

Закреплена за

Общей физики

кафедрой:

Направление

03.03.02 Физика

подготовки:

Направленность

Медицинская физика

(профиль):

Квалификация: Бакалавр

Форма обучения: очная

Семестр: 5

Программу составил(и):

без уч. степ., старший преподаватель, Котомкин Алексей Викторович

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели освоения дисциплины (модуля):

Целью освоения дисциплины является:

создать фундаментальную базу знаний и навыков для более углубленного проведения экспериментальных исследований при решении практических задач.

Задачи:

Задачами освоения дисциплины являются:

- Обучение методам анализа и объяснения наблюдаемых в лабораторном практикуме физических явлений;
- Обучение работе с приборами и оборудованием физической лаборатории, с современной измерительной аппаратурой;
 - Освоение различных методик физических измерений и экспериментов;
 - Привить навыки экспериментального исследования физических явлений и процессов;
- Освоение процесса обработки экспериментальных данных, оценивания порядки изучаемых величин, определение точности и достоверности полученных результатов;
- Обучение основным принципам автоматизации и компьютеризации физического эксперимента, процессов сбора и обработки физической информации;
- Привить навыки оформления результатов эксперимента и составления отчётной документации;
- Изучение основных элементов техники безопасности при проведении экспериментальных исследований.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Цикл (раздел) OП: Б1.O.13Б1.O

Требования к предварительной подготовке обучающегося:

Атомная физика

Физический практикум по механике

Физический практикум по молекулярной физике

Физический практикум по электричеству и магнетизму

Физический практикум по оптике

Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Физика атомного ядра и элементарных частиц

Физический практикум по физике атомного ядра и элементарных частиц

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость	3 3ET
Часов по учебному плану	108
в том числе:	
аудиторные занятия	68
самостоятельная работа	20

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-2.1: Определяет параметры физических объектов, систем и процессов с применением измерительного оборудования

- ОПК-2.3: Обрабатывает теоретические и экспериментальные данные по результатам научного исследования физических объектов, систем и процессов
 - ОПК-2.4: Подготавливает отчет по результатам научного исследования
- ПК-2.1: Проводит экспериментальные исследования с применением научно-исследовательского оборудования в соответствии с утвержденными методиками
- УК-1.5: Рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки

5. ВИДЫ КОНТРОЛЯ

Виды контроля	в семестрах	Κ :
зачеты		5

6. ЯЗЫК ПРЕПОДАВАНИЯ

Язык преподавания: русский.

7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код занят.	Наименование разделов и тем	Вид занятия	Семестр / Курс	Часов	Источ- ники	Примечан- ие
	Раздел 1. 1. Атом водорода					
1.1	Атом водорода. ЛР № 1, 2.	Лаб	5	11	Л1.3 Л1.1 Л1.4 Л1.2Л2.1 Л2.2 Л2.3	
1.2	Самостоятельная работа по теме "Атом водорода"	Ср	5	4	Л1.3 Л1.1 Л1.4 Л1.2Л2.1 Л2.2 Л2.3	
	Раздел 2. 2. Спектры атомов.					
2.1	Спектры атомов. ЛР № 1, 2, 3, 7.	Лаб	5	17	Л1.3 Л1.1 Л1.4 Л1.2Л2.1 Л2.2 Л2.3	
2.2	Самостоятельная работа по теме "Спектры атомов."	Ср	5	4	Л1.3 Л1.1 Л1.4 Л1.2Л2.1 Л2.2 Л2.3	
	Раздел 3. 3. Молекулярные спектры.					

	ог физика подицинская физика 2024.ріх				cip.
3.1	Молекулярные спектры ЛР № 4, 5.	Лаб	5	11	Л1.3 Л1.1 Л1.4 Л1.2Л2.1 Л2.2 Л2.3
3.2	Самостоятельная работа по теме "Атом водорода"	Ср	5	4	Л1.3 Л1.1 Л1.4 Л1.2Л2.1 Л2.2 Л2.3
	Раздел 4. 4. Энергетические уровни атомов.				
4.1	Энергетические уровни атомов. ЛР № 1, 2, 3, 6, 8.	Лаб	5	18	Л1.3 Л1.1 Л1.4 Л1.2Л2.1 Л2.2 Л2.3
4.2	Самостоятельная работа по теме "Энергетические уровни атомов."	Ср	5	4	Л1.3 Л1.1 Л1.4 Л1.2Л2.1 Л2.2 Л2.3
	Раздел 5. 5. Корпускулярные и волновые свойства микрочастиц.				
5.1	Корпускулярные и волновые свойства микрочастиц ЛР № 9, 10.	Лаб	5	11	Л1.3 Л1.1 Л1.4 Л1.2Л2.1 Л2.2 Л2.3
5.2	Самостоятельная работа по теме "Корпускулярные и волновые свойства микрочастиц"	Ср	5	4	Л1.3 Л1.1 Л1.4 Л1.2Л2.1 Л2.2 Л2.3

Список образовательных технологий

	1	Выполнение лабораторных работ
		Методы группового решения творческих задач (метод Дельфи, метод 6-6, метод
		развивающей кооперации, мозговой штурм (метод генерации идей), нетворкинг и т.д.)

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные материалы для проведения текущей аттестации

См. Приложение 1

8.2. Оценочные материалы для проведения промежуточной аттестации

См. Приложение 1

8.3. Требования к рейтинг-контролю

Студенты, освоившие программу курса могут получить зачет по итогам семестровой и полусеместровой рейтинговой аттестации согласно «Положению о рейтинговой системе обучения ТвГУ» (протокол №8 от 30 апреля 2020 г.).

Если условия «Положения о рейтинговой системе …» не выполнены, то зачет сдается согласно «Положению о промежуточной аттестации (экзаменах и зачетах) обучающихся по программам высшего образования ТвГУ» (протокол №11 от 28 апреля 2021 г.).

Модуль 1.

Выполнение лабораторных работ, представление результатов, ответы на теоретические вопросы - 40 баллов

Модуль 2

Выполнение лабораторных работ, представление результатов, ответы на теоретические вопросы - 40 баллов

зачет - 20 баллов

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

9.1. Рекомендуемая литература

9.1.1. Основная литература

Шифр	Литература			
Л1.1	Савельев И. В., Курс физики. В 3 томах. Том 3. Квантовая оптика. Атомная физика.			
	Физика твердого тела. Физика атомного ядра и элементарных частиц, Санкт-			
	Петербург: Лань, 2024, ISBN: 978-5-507-47404-2,			
	URL: https://e.lanbook.com/book/367055			
Л1.2	Савельев И. В., Курс физики. В 3 томах. Том 3. Квантовая оптика. Атомная физика.			
	Физика твердого тела. Физика атомного ядра и элементарных частиц, Санкт-			
	Петербург: Лань, 2023, ISBN: 978-5-507-46177-6,			
	URL: https://e.lanbook.com/book/302249			
Л1.3	Савельев И. В., Квантовая оптика. Атомная физика. Физика твердого тела. Физика			
	атомного ядра и элементарных частиц, Санкт-Петербург: Лань, 2021, ISBN: 978-5-			
	8114-1211-2,			
	URL: https://e.lanbook.com/book/167873			
Л1.4	Шпольский Э. В., Атомная физика, Москва, Ленинград: Государственное			
	издательство технико-теоретической литературы, 1949, ISBN: 978-5-4458-4573-7,			
	URL: https://biblioclub.ru/index.php?page=book&id=213904			

9.1.2. Дополнительная литература

Шифр	Литература			
Л2.1	Шуклов, Учебно-методический комплекс по дисциплине "Общая физика. Физика			
	атомов и атомных явлений", Тверь, 2012, ISBN:,			
	URL: http://texts.lib.tversu.ru/texts2/04329umk.pdf			

Л2.2	Шуклов, Учебно-методический комплекс по дисциплине "Общий физический			
	практикум. Физика атомов и атомных явлений [Физика атомного ядра и частиц]",			
	Тверь, 2012, ISBN:,			
	URL: http://texts.lib.tversu.ru/texts2/04281umk.pdf			
Л2.3	Шуклов, Учебно-методический комплекс по дисциплине "Общий физический			
	практикум. Физика атомов и атомных явлений", Тверь, 2012, ISBN:,			
	URL: http://texts.lib.tversu.ru/texts2/04280umk.pdf			

9.3.1 Перечень программного обеспечения

1	Kaspersky Endpoint Security 10 для Windows			
2	2 Adobe Acrobat Reader			
3	OpenOffice			

9.3.2 Современные профессиональные базы данных и информационные справочные системы

1	ЭБС ТвГУ
2	ЭБС BOOK.ru
3	ЭБС «Лань»
4	ЭБС «Университетская библиотека онлайн»
5	ЭБС «ЮРАИТ»
6	ЭБС «ZNANIUM.COM»

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Аудит-я	Оборудование		
3-214	комплект учебной мебели, принтер, компьютеры, установка для изучения и		
	анализа свойств материалов с помощью сцинтилляционного счетчика, установка		

11. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Лабораторные работы по курсам «физический практикум по атомной физике»

- 1. Изучение спектра атома водорода. Определение постоянной Ридберга.
- 2. Изучение явления самопоглощения спектральных линий
- 3. Определение энергии диссоциации молекул йода.
- 4. Опыты Франка и Герца.
- 5. Фотоэффект.
- методические указания к выполнению и оформлению лабораторных работ.

В ходе выполнения общего физического практикума следует руководствоваться следующими правилами, предписывающими единую форму оформления отчетов студентами и порядок выполнения ими лабораторных работ. Эти правила распространяются при работе студентов в лаборатории.

Так, порядок выполнения лабораторных работ включает в себя следующие пункты:

- 1. Регистрация и получение учебного задания (преподаватель).
- 2. Ознакомление с основами теории исследуемого явления (описание лабораторной работы и рекомендуемая литература).
- 3. Изучение экспериментальной установки, правил работы с приборами, правил техники безопасности на рабочем месте (инженер лаборатории).
 - 4. Изучение порядка выполнения работы (преподаватель).
- 5. Получение допуска к выполнению работы (контрольные вопросы Приложения 1) (преподаватель).
 - 6. Выполнение измерений или задания и проверка на «разумность» полученных

результатов.

- 7. Проверка расчетов и согласование результатов с преподавателем.
- 8. Оформление работы (письменный отчет) в отдельной тетради или двойном тетрадном листе бумаги в клеточку по установленной форме.
 - 9. «Сдача» лабораторной работы преподавателю.
- 10. Оценивание. 1-ая оценка экспериментальная часть работы, 2-ая теоретическая часть работы и ее оформление или общий зачет.

Письменный отчет о проделанной лабораторной работе должен содержать:

- 1. Регистрационный номер и название работы.
- 2. Цель работы.
- 3. Приборы и оборудование.
- 4. Краткая теория (основная формула, закон и т.д.).
- 5. Схема (рис.) экспериментальной установки (с краткими пояснениями).
- 6. Результаты измерений (таблица, график и т.п.).
- 7. Вычисления (цифровая подстановка).
- 8. Расчет погрешности.
- 9. Вывод (с записью найденного значения физической величины с указанием погрешности).
- требования к рейтинг-контролю. В течение семестра два раза (на модульных неделях) необходимо:
- сдать преподавателю решения домашних задач, полученных из указанных сборников задач,
 - ответить на вопросы. Пример вопросов:
- 1. Спектры испускания и поглощения. Что дала спектроскопия для развития квантовой теории.
- 2. Боровская теория атома водорода первый в истории физики вариант квантовой теории.
 - 3. Квантование колебаний и вращений двухатомных молекул.
 - 4. Факторы, приводящие к уширению спектральных линий.
- 5. По данным опыта найдите длину волны света, которую излучает криптон, переходя из возбужденного состояния в основное.
 - 6. По спектру молекулярного йода найти энергию его диссоциации.
- 7. Какие задачи решены при использовании в спектрометрах скрещенной дисперсии?

ПРИЛОЖЕНИЕ

Оценочные материалы для проведения текущей и промежуточной аттестации

Задание: дайте ответы на вопросы.

- 1. Энергия и импульс фотонов.
- 2. Постулаты Бора и их роль в истории становления квантовой теории.
- 3. Энергетическая диаграмма атомов.
- 4. По известному спектру дейтериво водородной смеси оценить отношение массы протона к массе электрона.
- 5. По известному спектру водорода оценить постоянную Ридберга.
- 6. Какие линии спектра иона He^+ в видимой области вы можете предсказать на основании теории Бора.

Способ аттестации: письменный

Критерии оценки:

- ответ полный, указаны и учтены все факторы, признаки и т.д. 2 балла за вопрос
- аргументация допустимая, но имеются неточности 1 балл
- допущены грубые ошибки, свидетельствующие о непонимании темы 0 баллов

Задание:

- 1. Значение теории Эйнштейна фотоэффекта в становлении квантовой теории.
- 2. Значение опытов Франка и Герца в подтверждении боровской теории.
- 3. Опыты Дэвиссона Джермера и их роль в подтверждении гипотезы де Бройля.
- 4. Спектры испускания и поглощения. Что дала спектроскопия для развития квантовой теории.
- 5. Боровская теория атома водорода первый в истории физики вариант квантовой теории.
- 6. Квантование колебаний и вращений двухатомных молекул.
- 7. Факторы, приводящие к уширению спектральных линий.

Способ аттестации: устный или письменный.

Критерии оценивания:

- ответ полный, указаны и учтены все факторы, признаки и т.д. 2 балла за вопрос
- аргументация допустимая, но имеются неточности 1 балл
- допущены грубые ошибки, свидетельствующие о непонимании темы 0 баллов

Задание:

Предоставить план совместных работ по определению постоянной Планка на основе данных по внешнему фотоэффекту.

Способ аттестации: письменный

Критерии оценки:

Высокий уровень (3 балла по каждому критерию)	Средний уровень (2 балла по каждому критерию)	Низкий уровень (1 балл по каждому критерию)
План составлен грамотно с условием всей специфики поставленной задачи.	План составлен в основном грамотно, но не полностью учтена специфика возможностей каждого исследователя.	План составлен с существенными методическими недоработками.

Задание 1: дайте ответ на вопросы.

- 1. Используя полученные вольтамперные характеристики, найти импульсы фотоэлектронов выбиваемых светом с разной длиной волны.
- 2. С помощью известного спектра ртути построить колибровочную кривую спектрометра ИСП-30. Оценить его линейную зависимость в различных спектральных диапазонах.
- 3. Сравнить длины волн электронов, полученные по формулам де Бройля и Вульфа-Брэгга.
- 4. Имея контур спектральной линии, оцените ее ширину в нм, а также герцах и см $^{-1}$

Задание 2:

Найти линейную корреляцию с помощью прикладных математических программ между величиной запирающего напряжения и частотой падающего света при внешнем фотоэффекте.

Способ аттестации: письменный

Критерии оценки:

Высокий уровень	Cnadrius imagain	Humani um a a aus
DHICOKUU VOORPHH	Средний уровень	Низкий уровень
2 occorning process	Specific ypodeno	11000000 ypodeno

(3 балла)	(2 балла)		(1 балл)	
Полностью	При выпо	лнении	Требуется подробное	
самостоятельно выполняет	задания тр	ебуется	разъяснение	преподавателя
предложенное задание,	консультация		при	использовании
используя	преподавателя. Нах	одит по	прикладных	программ и
рекомендованную	результатам экспер	римента оценке погрешности.		
преподавателем	постоянную План	іка и		
прикладную программу, и	оценивает погрешность.			
находит по результатам				
эксперимента постоянную				
Планка и оценивает				
погрешность.				

Задание:

Оформить лабораторную работу в соответствии с методическими указаниями. Представить ответы на контрольные вопросы.

Способ аттестации: письменный.

Критерии оценивания:

- работа оформлена согласно требованиям, представлены все разделы,
 проведены расчеты, построены графики, сформулирован грамотный вывод —
 5 баллов
- работа оформлена небрежно, есть ошибки в вычислениях, сформулирован вывод 3 балла
- работа оформлена небрежно, есть грубые ошибки, вывод неясно сформулирован и не согласуется с результатом работы -1 балл
- работа оформлена частично, содержит много ошибок 0 баллов