Документ подписан промины СТЕРГСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ Информация о владельце:

ФИО: Смирнов Сергей Николаевич

РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: врио ректора БОУ ВО «ТВЕРС КОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» дата подписания: 22.07.2024 16:03:28

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Рабочая программа дисциплины

БИОФИЗИКА Взаимодействие излучения с веществом

Закреплена за

Физики конденсированного состояния

кафедрой:

03.03.02 Физика Направление

подготовки:

Медицинская физика Направленность

(профиль):

Квалификация: Бакалавр

Форма обучения: очная

Семестр: 6

Программу составил(и):

канд. физ.-мат. наук, декан, Педько Б.Б.

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели освоения дисциплины (модуля):

изучить взаимодействие ионизирующего излучения с веществом, влияние разных видов излучения на человека, медицинские аспекты воздействия ионизирующего излучения

Задачи:

получить базовые представления о взаимодействии ионизирующих излучений с веществом

изучить влияние ионизирующих излучений на биологические объекты

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Цикл (раздел) OП: Б1.B.08Б1.B

Требования к предварительной подготовке обучающегося:

Математический анализ

Аналитическая геометрия и линейная алгебра

Дифференциальные уравнения

Обработка и анализ данных физического эксперимента

Численные методы и математическое моделирование

Электричество и магнетизм

Методы математической физики

Физический практикум по электричеству и магнетизму

Физический практикум по оптике

Физический практикум по молекулярной физике

Химия

Физический практикум по атомной физике

Физика магнитных явлений

Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Методы и средства лучевой диагностики

Преддипломная практика

Основы электромагнитной и радиационной безопасности

Физико-технические основы методов ультразвукового исследования

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость	2 3ET
Часов по учебному плану	72
в том числе:	-
аудиторные занятия	42
самостоятельная работа	20

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

- ПК-2.2: Анализирует физические явления и процессы и составляет отчет по теме исследования или по результатам проведенных экспериментов
- ПК-3.1: Осуществляет анализ данных с применением математических методов и информационных технологий
- ПК-3.2: Использует систематизированные теоретические и практические знания для определения и решения профессиональных задач в области медицинской физики

5. ВИДЫ КОНТРОЛЯ

Виды контроля	в семестрах	:
зачеты		6

6. ЯЗЫК ПРЕПОДАВАНИЯ

Язык преподавания: русский.

7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код	Наименование разделов и	Вид	Семестр	Часов	Источ-	Примечан-
занят.	тем	занятия	/ Kypc		ники	ие
	Раздел 1. Основные понятия, величины и единицы в области ионизирующих излучений					
1.1	Дифференциальные и интегральные характеристики поля излучения. Сечение взаимодействия (поперечное сечение) ионизирующих излучений с веществом. Закон ослабления узкого пучка. Радиоактивный распад. Дозовые характеристики поля излучения	Лек	6	6	Л1.4 Л1.1 Л1.3Л2.4 Л2.1 Л2.3 Л2.5	
1.2	Выполнение практических заданий по заданной теме	Пр	6	4		
1.3	Самостоятельная работа по изучению темы	Ср	6	4		
	Раздел 2. Взаимодействие ионизирующих излучений с веществом					
2.1	Взаимодействие электромагнитного излучения с веществом.	Лек	6	6	Л1.2Л2.2	
2.2	Взаимодействие нейтронов с веществом	Лек	6	6	Л1.5 Л1.6	
2.3	Взаимодействие заряженных частиц с веществом	Лек	6	6		
2.4	Выполнение практических заданий по теме "Взаимодействие ионизирующих излучений с веществом"	Пр	6	6		
2.5	Самостоятельная работа по изучению вопросов и выполнению практических заданий по теме "Взаимодействие ионизирующих излучений с веществом" Раздел 3. Радиационная	Ср	6	12		
	безопасность					

3.1	Радиационный фон. Нормы радиационной безопасности. Воздействие радиации на человека	Лек	6	4	
3.2	Выполнение практических заданий по теме "Радиационная безопасность"		6	4	
3.3	Подготовка доклада по заданной теме.	Ср	6	4	

Список образовательных технологий

1	Активное слушание
2	Информационные (цифровые) технологии

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные материалы для проведения текущей аттестации

См. Приложение

8.2. Оценочные материалы для проведения промежуточной аттестации

См. Приложение

8.3. Требования к рейтинг-контролю

Модуль 1

Работа в аудитории (доклады, участие в дискуссии, решение задач) - 30 баллов Контрольная работа - 20 баллов

Модуль 2

Работа в аудитории (доклады, участие в дискуссии, решение задач) - 30 баллов Контрольная работа - 20 баллов

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

9.1. Рекомендуемая литература

9.1.1. Основная литература

Шифр	Литература
Л1.1	Кузнецов, Лидер, Физика. Волновая оптика. Квантовая природа излучения.
	Элементы атомной и ядерной физики, Москва: Вузовский учебник, 2024, ISBN: 978-
	5-9558-0350-0,
	URL: https://znanium.com/catalog/document?id=436939
Л1.2	Мирошниченко И. Б., Взаимодействие лазерного излучения с веществом,
	Новосибирск: НГТУ, 2021, ISBN: 978-5-7782-4355-2,
	URL: https://e.lanbook.com/book/216539
Л1.3	Макаров О. А., Николаева Л. А., Гигиеническое нормирование воздействия
	природных источников ионизирующего излучения и медицинское облучение
	населения, Иркутск: ИГМУ, 2020, ISBN:,
	URL: https://e.lanbook.com/book/213389

Л1.4	Макаров О. А., Николаева Л. А., Воздействие ионизирующего излучения на организм человека, Иркутск: ИГМУ, 2016, ISBN: , URL: https://e.lanbook.com/book/158734
Л1.5	Джепаров Ф. С., Львов Д. В., Нейтронные исследования конденсированных сред, Москва: НИЯУ МИФИ, 2012, ISBN: 978-5-7262-1760-4, URL: http://e.lanbook.com/books/element.php?pl1_id=75934
Л1.6	Алексеев П. А., Менушенков А. П., Нейтронные методы в физике конденсированного состояния, Москва: НИЯУ МИФИ, 2012, ISBN: 978-5-7262-1666 -9, URL: http://e.lanbook.com/books/element.php?pl1_id=75924

9.1.2. Дополнительная литература

Шифр	Литература
Л2.1	Романцова И. В., Ткаченко В. В., Кутьков В. А., Сборник задач по дозиметрии и защите от ионизирующих излучений, Москва: НИЯУ МИФИ, 2022, ISBN: 978-5-7262-2874-7,
	URL: https://e.lanbook.com/book/355547
Л2.2	Кирпичников Ю. А., Корнилов Г. П., Николаев А. А., Храмшин Т. Р., Сборник задач по теории электромагнитного поля, Магнитогорск: МГТУ им. Г.И. Носова, 2019, ISBN: 978-5-9967-1549-7,
	URL: https://e.lanbook.com/book/162562
Л2.3	Дресвянников А. Ф., Колпаков М. Е., Ермолаева Е. А., Петрова Е. В., Выжимов Ю. М., Назипов Р. А., Измерение ионизирующих излучений: теоретические и прикладные аспекты, методы и средства, Казань: КНИТУ, 2018, ISBN: 978-5-7882-2304-9, URL: https://e.lanbook.com/book/138428
Л2.4	Климанов В. А., Крамер-Агеев Е. А., Смирнов В. В., Дозиметрия ионизирующих излучений, Москва: НИЯУ МИФИ, 2015, ISBN: 978-5-7262-2096-3, URL: https://e.lanbook.com/book/126644
Л2.5	Кондратенко С. Г., Физические основы измерений характеристик ионизирующих излучений: конспект лекций, Москва: Академия стандартизации, метрологии и сертификации, 2011, ISBN: 978-5-93088-088-5, URL: https://biblioclub.ru/index.php?page=book&id=138890

9.3.1 Перечень программного обеспечения

1	Kaspersky Endpoint Security 10 для Windows
2	Adobe Acrobat Reader
3	OpenOffice
4	Google Chrome
5	Mozilla Firefox
6	Многофункциональный редактор ONLYOFFICE

9.3.2 Современные профессиональные базы данных и информационные справочные системы

1	Репозитарий ТвГУ
2	Научная электронная библиотека eLIBRARY.RU (подписка на журналы)
3	ЭБС ТвГУ
4	ЭБС BOOK.ru
5	ЭБС «Лань»

6	ЭБС IPRbooks
7	ЭБС «Университетская библиотека онлайн»
8	ЭБС «ЮРАИТ»
9	ЭБС «ZNANIUM.COM»

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Аудит-я	Оборудование		
3-227	комплект учебной мебели, переносной ноутбук, проектор, экран		
3-38	комплект учебной мебели, печь трубчатая, мониторы, проектор, фотомикроскоп, вакуумные посты, весы лабораторные, коммутатор,		

11. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

ПРИЛОЖЕНИЕ

Задания для текущей и промежуточной аттестации

Вопросы

- 1. Дозиметрия ионизирующих излучений общая характеристика.
- 2. Дифференциальные и интегральные характеристики поля излучения
- 3. Сечение взаимодействия (поперечное сечение) ионизирующих излучений с веществом
- 4. Закон ослабления узкого пучка
- 5. Радиоактивный распад
- 6. Дозовые характеристики ноля излучения
- 7. Взаимодействие электромагнитного излучения с веществом
- 8. Фотоэффект
- 9. Эффект Комптона
- 10. Образование элекгрон позигронных нар
- 11. Аннигиляция позитрония
- 12. Квантовая запутанность и Квантовая телепортация
- 13. Образование фотонейтронов
- 14. Общая характеристика взаимодействия фотонов с веществом
- 15. Взаимодействие нейтронов с веществом
- 16. Общая характеристика взаимодействия нейтронов с веществом
- 17. Кинематика рассеяния нейтронов
- 18. Радиационный захват
- 19. Захват нейтрона с последующим испусканием заряженных и не заряженных частиц
- 20. Вынужденное деление атомных ядер нейтронами
- 21. Естественный атомный реактор в Окло
- 22. Общая характеристика прохождения нейтронов через вещество
- 23. Взаимодействие заряженных частиц с веществом
- 24. Ионизационное торможение заряженных частиц. Уравнение Бете Блоха
- 25. Пробег заряженных частиц в веществе. δ-электроны
- 26. Упругое рассеяние заряженных частиц на ядрах. Ядерное взаимодействие
- 27. Тормозное излучение
- 28. Излучение Вавилова Черенкова
- 29. Излучение сверхсветовых источников в вакууме
- 30. Переходное излучение на границе раздела двух сред
- 31. Естественный радиационный фон
- 32. Техногенный радиационный фон
- 33. Искусственный радиационный фон
- 34. Требования к ограничению техногенного облучения в контролируемых условиях
- 35. Воздействие радиации на человека

Контрольные вопросы

- 1. Назвать физический смысл микроскопического сечения взаимодействия. От чего зависит величина сечения?
- 2. Что такое дифференциальное сечение взаимодействия, как оно связано с полным сечением, как с его помощью вычислить средние характеристики частиц после взаимодействия?
- 3. Дать определение и физический смысл сечения рассеяния и поглощения энергии.
- 4. Привести примеры формул для преобразования сечений.
- 5. Какое излучение называют нерассеянным?
- 6. Дать определение физического смысла макроскопического сечения. Как оно связано с микроскопическим сечением?
- 7. Что такое тормозная способность вещества?
- 8. Объяснить фразу «пробег в приближении непрерывного замедления».
- 9. Назвать макроскопические коэффициенты взаимодействия частиц с веществом и объяснить их физический смысл.
- 10. Чем отличается ЛПЭ от тормозной способности вещества?

Упражнения

- 1. Вывести закон ослабления нерассеянного излучения.
- 2. Получить выражения для средней переданной (поглощенной) энергии и $\cos\theta$ при рассеянии.

Задачи

- 1. (*) Для рассеяния низкоэнергетических фотонов $\frac{d\sigma}{d\Omega} = \frac{r_e^2}{2} \left(1 + \cos^2 \vartheta\right)$, где $r_e = e^2/m_e c^2$. Построить график этой функции. Вычислить число фотонов, рассеянных "вперед" ($\vartheta < \pi/2$) и "назад" ($\vartheta > \pi/2$).
- 2. Найти $d\sigma/d\Omega$, если $\rho = a\cos \theta/2$.
- 3. (*)Точечная частица рассеивается на шаре радиуса a. Найти и построить графики функций $\rho(\vartheta)$, $d\sigma/d\Omega$, $d\sigma/dQ$, $\overline{\eta}(T)$, $\kappa_a(T)$, T(s).
- Поверхность сферы разделена параллелями на *n* равных частей, каждая получившаяся площадь разделена на *n* равных частей меридианами. Найти границы получившихся областей в сферической системе координат и вычислить площадь одной из них интегрированием.

- 5. Пусть массы сталкивающихся частиц равны и $\frac{d\sigma}{dQ} = \frac{A}{T} \frac{1}{Q^2}$ $(I < Q < \frac{T}{2})$. Вычислить полное сечение рассеяния, $d\sigma/d\Omega$ в СЦИ, $d\sigma/d\Omega_1$ и $d\sigma/d\Omega_2$ в ЛСК, потери энергии на единице пути, зависимость энергии от пройденного пути, зависимость пробега от энергии.
- 6. При энергии $1\,\Gamma$ эВ сечение взаимодействия нейтрино с грунтом $\sigma = 10^{-35}\,$ см 2 . Вычислить среднюю длину свободного пробега, найти среднее число столкновений нейтрино на диаметре Земли и кратность ослабления нейтринного пучка Землей. $R_3 = 6\,380\,$ км.
- 7. Частица с прицельным параметром ρ падает вдоль оси OZ на сферический детектор радиуса R. Вычислить длину пути частицы в детекторе L (лучевые размеры детектора).
- 8. (*) Поток частиц с равномерной плотностью падает вдоль оси OZ на сферический детектор радиуса R. Найти аналитически среднее значение прицельного параметра $\overline{\rho}$ и среднее значение лучевых размеров детектора \overline{L} . Вычислить эти значения методом статистического моделирования и сравнить с аналитическими значениями. Получить распределения частиц по прицельному параметру и лучевым размерам. Примечание: для статистического моделирования можно использовать листинги программ, приведенные в приложении 2.