Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио р**фин**истерство науки и высшего образования Российской Федерации Дата подписания: 15.07.2025 10:27:41

Уникальный программный клфгбоу во «Тверской Государственный университет» 69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Ворончихина Л.И.

14 мая 2025

Рабочая программа дисциплины (с аннотацией)

Актуальные задачи современной химии. Часть 2.

Направление подготовки 04.04.01 Химия

Направленность (профиль)

Аналитическая химия

Органическая химия

Физическая химия

Для студентов 2 курса очной формы обучения

Составитель: к.х.н., доцент Журавлев О.Е.

І. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины является осмысление, систематизация и расширение представлений в области современной химии в частности органической химии.

Задачами освоения дисциплины являются:

- приобретении и закреплении навыков поиска, анализа и обобщения научных данных и формировании представлений о наиболее актуальных проблемах современной теоретической и экспериментальной химии.
- представление о наиболее актуальных проблемах и важнейших достижениях современной теоретической и экспериментальной химии в частности органической химии.

2. Место дисциплины в структуре ООП

Дисциплина «Актуальные задачи современной химии. Часть 2.» входит в обязательную часть Блока 1. «Дисциплины» учебного плана.

При освоении данной дисциплины обучающиеся используют знания, приобретенные при изучении следующих дисциплин: компьютерные технологии в науке и образовании, актуальные задачи современной химии часть 1, философские проблемы химии.

В соответствии с требованиями ФГОС по направлению подготовки 04.04.01 Химия реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

При подготовке к занятиям, требуется работы с периодикой, в частности с журналами «Журнал прикладной химии», «Журнал органической химии», «Журнал физической химии», а также с ресурсами сети интернет. Таким образом, магистранты могут ознакомиться с опытом работы передовых как Российских, так и зарубежных ученых.

3. Объем дисциплины: 3 зачетные единицы, **108** академических часов; **в том числе:**

контактная аудиторная работа: практические занятия - 15 часов, в т.ч. практическая подготовка - 15 часов;

самостоятельная работа: 93 часа.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты	Планируемые результаты обучения по
освоения образовательной	дисциплине
программы (формируемые	
компетенции)	
ОПК-2 Способен анализировать, интерпретировать и обобщать результаты экспериментальных и расчетно-теоретических работ в избранной области химии или смежных наук	ОПК-2.1 Проводит критический анализ результатов собственных экспериментальных и расчетнотеоретических работ, корректно интерпретирует их. ОПК-2.2 Формулирует заключения и выводы по результатам анализа литературных данных, собственных экспериментальных и расчетнотеоретических работ в избранной области
	химии или смежных наук.

5. Форма промежуточной аттестации и семестр прохождения:

зачет – 3 семестр.

6. Язык преподавания русский.

II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Учебная программа –	Всего (час.)	K	Сонтактная рабо	та (час.)	Самостоятел
наименование разделов и тем	(час.)	Лекции	Практические занятия/	Контроль самостоятельной работы (в том числе курсовая работа)	ьная работа, в том числе Контроль (час.)
Тема 1. Основные			5		20
направления развития					
современной					
органической химии.					
Основные теоретические					
принципы и концепции					
органической химии:					
химическая связь,					
химическое строение,					
химическая реакция.					
Характеристика главных					
направлений развития					
современной химии и					
проблем органической					
химии.					

	 Τ_	T	
Тема 2. Проблемы	5		40
строения и реакционной			
способности			
органических			
соединений.			
Состояние и проблемы			
понимания химической			
связи. Современные			
теории химической связи.			
Связи углерода в			
органических молекулах.			
Гибридизация.			
Образование связей С—С.			
Проблема соотношения			
структура — свойства.			
Прогнозирование свойств			
органических соединений.			
Взаимопревращения			
функциональных групп.			
Селективность			
органических реакций.			
Классификация проблем			
селективности. Способы			
управления			
селективностью			
органических реакций.			
Построение циклических			
структур. Специфика			
задач при синтезе			
циклических структур.			
Обычные методы			
ациклической химии в			
построении циклических			
систем.			

Тема 3.Современное		5	33
состояние и			
перспективы развития			
органического синтеза.			
Принципы и проблемы			
органического синтеза.			
Основные тенденции			
развития органического			
синтеза. Практическая			
направленность и			
фундаментальное			
значение. Методология			
органического синтеза.			
Стратегия синтеза. Роль			
планирования в синтезе.			
Варианты стратегии.			
Линейный и			
конвергентный подходы.			
Органические реакции и			
синтетические методы.			
Оптимизация			
классических и разработка			
новых синтетических			
методов.			
Ретросинтетический			
анализ.			
Молекулярный дизайн.			
Структурно-			
ориентированный дизайн.			
Функционально-			
ориентированный дизайн.			
Примеры синтезов			
сложных органических			
соединений.			
ИТОГО	108	15	93

Ш. Образовательные технологии

Учебная программа – наименование разделов и тем (в строгом	Вид занятия	Образовательные технологии
соответствии с разделом II РПД)		
Тема 1. Основные направления развития	Практическая работа	Цифровые (показ презентаций)
современной органической химии.		Технология проблемного обучения
		Групповая работа

Тема 2. Проблемы строения и реакционной способности органических соединений.	Практическая работа	Цифровые (показ презентаций) Технология проблемного обучения Групповая работа
Тема 3. Современное состояние и перспективы развития органического синтеза.	Практическая работа	Цифровые (показ презентаций) Технология проблемного обучения Групповая работа

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Результат (индикат ор)	Типовые контрольные задания для оценки знаний, умений, навыков	Показатели и критерии оценивания компетенции, шкала оценивания
ОПК-2.1	1. В промышленности в качестве сульфирующих реагентов используют 70-100%-ные растворы серной кислоты, олеум, имеющий различное содержание триоксида серы, либо газообразный SO ₃ . Какой из этих реагентов сульфирования экономически более целесообразен? 2. Объясните, почему для сульфирования нитросоединений, и нитробензола в частности, требуются более жесткие условия, чем для сульфирования бензола 3. Опишите способ очистки бензойной кислоты методом перекристаллизации. Укажите основные принципы выбора растворителя для перекристаллизации. Обоснуйте свой ответ 4. Предложите способ подтверждения структуры бензойной кислоты спектральными методами. Опишите ожидаемые максимумы поглощения в спектрах бензойной кислоты и	Имеется полный аргументирован ный ответ, — 3 балла; Дан правильный ответ, но он не аргументирован ы— 2 балла; Имеется частичный верный ответ— 1 балл. 1 балл — «3» 2 балла — «4» 3 балла — «5»
ОПК-2.2	соотнесите их со структурой молекулы. 1. С помощью программы Origin построить график зависимости эквивалентной электропроводности от концентрации по следующим точкам:	Имеется полный правильный ответ, – 3

ЭП, См/см*моль⁻¹:	балла;
138,140,143,148,152,159,170,183,186,192,196,2	Построены
11,249,284	графические
Концентрация, моль/л $*10^3$: 12, 11, 9, 7, 6, 4,	зависимости но
0.9, 0.8, 0.6, 0.3, 0.2, 0.1.	не определены
Графически определите эквивалентную ЭП	необходимые
при бесконечном разведении	параметры,— 2
2. Из термограммы соединения графически	1
найти термическую стабильность соединения	балла;
(методом построения касательных). По потере	Построена
массы (кривая ТГ) найдите скорость потерь	только одна
массы (ДТГ). Оцените количество стадий	зависимость и
процесса разложения вещества.	частично сделан
3. С помощью расчетных методов квантовой	расчет– 1 балл.
химии (программный пакет Gamess) оценить	1 балл – «3» 2
распределение зарядов в молекуле ионной	балла – «4» 3
жидкости – 1-бутил-3-гексилимидазолий	балла – «5»
дицианамид	

V. Учебно-методическое и информационное обеспечение дисциплины

1. Рекомендуемая литература

А. Основная литература

1. Сватовская Л.Б. Современная химия [Электронный ресурс]: учебное пособие/ Сватовская Л.Б.— Электрон. текстовые данные.— М.: Учебно-методический центр по образованию на железнодорожном транспорте, 2013.— 252 с.— Режим доступа: http://www.iprbookshop.ru/16145.html.

Б. Дополнительная литература

Аналитическая химия [Электронный ресурс] : учебное пособие / О.Б. Кукина [и др.]. — Электрон. текстовые данные. — Воронеж: Воронежский государственный архитектурно-строительный университет, ЭБС АСВ, 2014. — 162 с. — 978-5-89040-499-2. — Режим доступа: http://www.iprbookshop.ru/30833.html

2) Программное обеспечение

Свободно распространяемое программное обеспечение

- 3) Современные профессиональные базы данных и информационные справочные системы
- 4) Перечень ресурсов информационно-телекоммуникационной сети «Ин-тернет», необходимых для освоения дисциплины
 - 1. http://www.xumuk.ru/
 - 2. http://nehudlit.ru/books/subcat283.html
 - 3. http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/BIOHIMIYA.html

- 4. http://elibrary.ru/
- 5. http://www.medbook.net.ru/23.shtml
- 6. http://www.chem.msu.su/rus/teaching/kolman/index.htm

VI. Методические материалы для обучающихся по освоению дисциплины

Задания для самостоятельной работы

I. В промышленности в качестве сульфирующих реагентов используют 70-100%-ные растворы серной кислоты, олеум, имеющий различное содержание триоксида серы, либо газообразный SO₃.

Какой из этих реагентов сульфирования экономически более целесообразен?

- **II**. Сульфирование ароматических нитросоединений протекает в более жестких условиях по сравнению с бензолом. Так, при сульфировании нитробензола и *п*-нитротолуола применяется 65%-ный олеум, тогда как бензол сульфируется концентрированной серной кислотой. Однако серный ангидрид является не только сульфирующим, но и окисляющим агентом, причем это свойство триоксида серы проявляется при температуре свыше 130°С. Поэтому несоблюдение температурных условий сульфирования может привести к аварии.
- 1. Объясните, почему для сульфирования нитросоединений, и нитробензола в частности, требуются более жесткие условия, чем для сульфирования бензола.
- 2. Какие соединения образуются при сульфировании нитробензола и *п*нитротолуола? Объясните ориентирующее влияние заместителей.
- 3. Какие меры техники безопасности необходимо принимать для безаварийного проведения процесса сульфирования?
- **III**. В лабораторной практике используется реакция сульфохлорирования ароматических соединений:

 $ArH + ClSO_3H \rightarrow ArSO_3H + HCl$

 $ArSO_3H + ClSO_3H \rightarrow ArSO_2Cl + H_2SO_4$

Условия проведения этой реакции зависят от реакционной способности веществ. Ниже приводятся три общих методики по проведению реакции сульфохлорирования ароматических соединений (ArH):

- 1) ArH малореакционноспособные. К ароматическому соединению сразу прибавляют трехкратный мольный избыток хлорсульфоновой кислоты и при перемешивании медленно нагревают до 110-120°C.
- 2) ArH средней реакционной способности. Ароматическое соединение добавляют по каплям при перемешивании и охлаждении до 0-5°C к трехкратному мольному избытку хлорсульфоновой кислоты. Перемешивают при комнатной температуре.
- 3) ArH реакционноспособные. Исходное соединение растворяют в сухом хлороформе и к нему по каплям прибавляют двукратный мольный избыток хлорсульфоновой кислоты при хорошем перемешивании и охлаждении до 10°C.

- 1. Объясните, какие из монозамещенных бензола являются малореакционноспособными, обладают средней реакционной способностью и являются реакционноспособными.
- 2. Почему в методике 3 исходное соединение разбавляют в хлороформе и к нему добавляют хлорсульфоновую кислоту, а не наоборот?
- 3. Во всех методиках не указано время реакции. Что может быть визуальным критерием окончания процесса сульфохлорирования в рассматриваемом случае?

Информация. НСІ плохо растворим в реакционной массе.

IV. В препаративной органической химии часто прибегают к временной защите тех функциональных групп, участие которых в реакциях нежелательно. В дальнейшем защитная группа снимается и функциональная группа регенерируется. Некоторые из этих методов нашли применение в промышленных масштабах.

Ниже приводятся схемы синтеза сульфаниламидных препаратов: *n*-аминобензосульфамида (белый стрептоцид, I) и *n*-аминобензолсульфацетамида (альбуцид, II). Некоторые из них предусматривают временную защиту аминогруппы ацетильной группой:

Предложите схемы реакций, которые позволяют осуществить приведенные выше синтезы. Какова роль защитной группы в рассматриваемом случае?

Темы рефератов

- 1. Этапы развития физической химии.
- 2. Супрамолекулярная химия.
- 3. Современные проблемы мембранных технологий.

- 4. Современные методы исследования каталитических процессов и катализаторов.
- 5. Современная квантовая химия. Квантовомеханические модели реакционных центров в молекулах и ионах
- 6. Электрохимические методы получения тонкопленочных покрытий.
- 7. Водородная энергетика: прошлое, настоящее, прогнозы на будущее.
- 8. Водородаккумулирующие материалы в электрохимических системах.
- 9. Кристаллосенсорика.
- 10. Углеродные и неуглеродныенанотрубки.
- 11. Координационные супрамолекулярные конструкции.
- 12. Современные методы исследования и оценки реакционной способности молекул.
- 13. Металлохелаты. Прикладные аспекты химии хелатов.
- 14. Научные основы создания и эффективного использования электрокатализаторов.
- 15. Наноэлектрохимия и нанотехнология.
- 16. Газовые гидраты: современное состояние, перспективы исследований.
- 17. Краун-эфиры
- 18. Ионные жидкости. Строение, свойства
- 19. Применение ионных жидкостей в нанотехнологиях и процессах получения новых материалов.
- 20. Биологическая активность и токсичность ионных жидкостей
- 21. Фуллерены и их производные
- 22. Терпены. Строение, свойства, значение
- 23. Современные методы физико-химического анализа
- 24. Современные проблемы катализа
- 25. Использование моделирования в химии.
- 26. Новые типы механизмов химических реакций
- 27. Современный термический анализ
- 28. Современные спектральные методы анализа
- 29. Дифракционные методы анализа.
- 30. Фотоэлектролиз. Преобразование солнечной энергии в химическую и электрическую.

VII. Материально-техническое обеспечение

Учебные аудитории, компьютеры, мультимедийный проектор.

VIII. Сведения об обновлении рабочей программы дисциплины

№п.п.	Обновленный раздел рабочей программы дисциплины	Описание внесенных изменений	Реквизиты документа, утвердившего изменения
1.	Раздел V. Учебно- методическое и информационное	Добавлены новые пособия в основной список литературы	Протокол №11 от 28.04.21г. заседания ученого совета химико-

	обеспечение дисциплины	технологического факультета
2.		