Документ подписан про**МИЛЬНИС** БЕРГСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ Информация о владельце: РОССИЙСКОЙ ФЕДЕРАЦИИ

ФИО: Смирнов Сергей Николаевич

ФИО: Смирнов Сергей Николаевич Должность: врио реутора СУ ВО «ТВЕРСКОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Дата подписания: 21.07.2025 15:50:26

Дата подписания: 21.07.2025 15:50 Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Е.М. Семенова

4>>

июня 2025 г.

Рабочая программа дисциплины

Физический практикум по молекулярной физике

Закреплена за

Общей физики

кафедрой:

Направление

03.03.02 Физика

подготовки:

Направленность

Физика, технологии и компьютерное моделирование

(профиль):

функциональных материалов

Квалификация:

Бакалавр

Форма обучения:

очная

Семестр:

2

Программу составил(и):

без уч. степ., старший преподаватель, Котомкин Алексей Викторович

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели освоения дисциплины (модуля):

Целью освоения дисциплины является:

создать фундаментальную базу знаний и навыков для более углубленного проведения экспериментальных исследований при решении практических задач.

Задачи:

Задачами освоения дисциплины являются:

- Обучение методам анализа и объяснения наблюдаемых в лабораторном практикуме физических явлений;
- Обучение работе с приборами и оборудованием физической лаборатории, с современной измерительной аппаратурой;
 - Освоение различных методик физических измерений и экспериментов;
- Привить навыки экспериментального исследования физических явлений и процессов;
- Освоение процесса обработки экспериментальных данных, оценивания порядки изучаемых величин, определение точности и достоверности полученных результатов;
- Обучение основным принципам автоматизации и компьютеризации физического эксперимента, процессов сбора и обработки физической информации;
- Привить навыки оформления результатов эксперимента и составления отчётной документации;
- Изучение основных элементов техники безопасности при проведении экспериментальных исследований.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Цикл (раздел) ОП: Б1.О

Требования к предварительной подготовке обучающегося:

Механика

Физический практикум по механике

Математический анализ

Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Физический практикум по физике атомного ядра и элементарных частиц

Термодинамика и статистическая физика

Физический практикум по атомной физике

Физический практикум по оптике

Физический практикум по электричеству и магнетизму

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость	3 3ET
Часов по учебному плану	108
в том числе:	
аудиторные занятия	72
самостоятельная работа	16

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-2.1: Определяет параметры физических объектов, систем и процессов с применением измерительного оборудования

- ОПК-2.3: Обрабатывает теоретические и экспериментальные данные по результатам научного исследования физических объектов, систем и процессов.
 - ОПК-2.4: Подготавливает отчет по результатам научного исследования
- ПК-2.1: Проводит экспериментальные исследования с применением научноисследовательского оборудования в соответствии с утвержденными методиками
- УК-1.3: Осуществляет поиск информации для решения поставленной задачи по различным типам запросов
- УК-1.5: Рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки

5. ВИДЫ КОНТРОЛЯ

Виды контроля	в семестрах	ζ:
зачеты		2

6. ЯЗЫК ПРЕПОДАВАНИЯ

Язык преподавания: русский.

7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код занят.	Наименование разделов и тем	Вид занятия	Семестр / Курс	Часов	Источ- ники	Примечан- ие
	Раздел 1. 1. Термометрия					
1.1	Термометрия. Тепловое расширение. Уравнение состояния идеальных газов. ЛР $N \ge 7, 5, 6, 2$.		2	10	Л1.1 Л1.3Л2.1 Л2.2	
1.2	Самостоятельная работа по теме "Уравнение состояния идеальных газов"	1	2	2	Л1.1 Л1.2Л2.1 Л2.2	
	Раздел 2. 2. Первое начало термодинамики.					
2.1	Первое начало термодинамики. ЛР № 5, 6.	Лаб	2	10	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
2.2	Самостоятельная работа по теме "Первое начало термодинамики"	Ср	2	3	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
	Раздел 3. 3. Свойства жидкостей					
3.1	Свойства жидкостей. ЛР № 1, 2, 3, 4, 7, 8.	Лаб	2	11	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
3.2	Самостоятельная работа по теме "Свойства жидкостей"	Ср	2	3	Л1.1 Л1.2 Л1.3	
	Раздел 4. 4. Процессы переноса в газах.					

-	1.	1			<u> </u>	
4.1	Процессы переноса в газах. ЛР № 9, 12, 14.	Лаб	2	11	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
4.2	Самостоятельная работа по теме "Процессы переноса в газах"	Ср	2	2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
	Раздел 5. 5. Тепловые процессы в твердых телах.					
5.1	Тепловые процессы в твердых телах. ЛР № 10, 11, 13, 15.	Лаб	2	10	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
5.2	Самостоятельная работа по теме "Тепловые процессы в твердых телах"	Ср	2	2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
	Раздел 6. 6. Фазовые переходы.					
6.1	Фазовые переходы. ЛР № 4, 8, 15.	Лаб	2	10	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
6.2	Самостоятельная работа по теме "Фазовые переходы"	Ср	2	2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
	Раздел 7. 7. Распределения Максвелла и Больцмана.					
7.1	Распределения Максвелла и Больцмана. ЛР № 16, 17.	Лаб	2	10	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
7.2	Самостоятельная работа по теме "Распределения Максвелла и Больцмана"	Ср	2	2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	

Список образовательных технологий

1	Методы группового решения творческих задач (метод Дельфи, метод 6–6, метод развивающей кооперации, мозговой штурм (метод генерации идей), нетворкинг и т.д.)
2	Выполнение лабораторных работ

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные материалы для проведения текущей аттестации

См. Приложение 1

8.2. Оценочные материалы для проведения промежуточной аттестации

См. Приложение 1

8.3. Требования к рейтинг-контролю

См. Приложение 1

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

9.1. Рекомендуемая литература

9.1.1. Основная литература

Шифр	Литература			
Л1.1	Яворский, Пинский, Основы физики. Том 1. Механика. Молекулярная физика.			
	Электродинамика, Москва: Издательская фирма "Физико-математическая			
	литература" (ФИЗМАТЛИТ), 2017, ISBN: 978-5-9221-1754-8,			
	URL: https://znanium.com/catalog/document?id=369170			
Л1.2	Савельев И. В., Курс общей физики. В 3 томах. Том 1. Механика. Молекулярная			
	физика, Санкт-Петербург: Лань, 2023, ISBN: 978-5-507-48093-7,			
	URL: https://e.lanbook.com/book/341150			
Л1.3	Савельев И. В., Курс физики. В 3 томах. Том 1. Механика. Молекулярная физика,			
	Санкт-Петербург: Лань, 2023, ISBN: 978-5-507-47075-4,			
	URL: https://e.lanbook.com/book/324407			

9.1.2. Дополнительная литература

Шифр	Литература
Л2.1	Новоселов, Медведева А. Г., Грушичев Ю. Г., Пастушенков, Лекции по общей физике. Молекулярная физика и термодинамика, Тверь: Тверской государственный университет, 2022, ISBN:,
	URL: http://megapro.tversu.ru/megaPro/UserEntry?Action=FindDocs&ids=5462818
Л2.2	Семенова, Ляхова А. В., Зубкова А. Р., Новоселов, Молекулярная физика и термодинамика, Тверь: Тверской государственный университет, 2022, ISBN:, URL: http://megapro.tversu.ru/megaPro/UserEntry?Action=FindDocs&ids=5462727

9.3.1 Перечень программного обеспечения

1	Adobe Acrobat Reader
2	Kaspersky Endpoint Security 10 для Windows
3	OpenOffice
4	Foxit Reader

9.3.2 Современные профессиональные базы данных и информационные справочные системы

1	ЭБС «ZNANIUM.COM»
2	ЭБС «ЮРАИТ»
3	ЭБС «Университетская библиотека онлайн»
4	ЭБС IPRbooks
5	ЭБС «Лань»
6	ЭБС ВООК.ru
7	ЭБС ТвГУ

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Аудит-я Оборудование	
3-211	комплект учебной мебели, принтер, экраны настенные, компьютеры, установка
	для определения определнния коэфециента диффузии воздуха и водяного пара,

11. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

список лабораторных работ

Лабораторные работы по курсам «Молекулярная физика»

- 1. Определение вязкости жидкости методом Стокса.
- 2. Определение теплоты испарения жидкости по температурной зависимости упругости насыщенного пара.
 - 3. Определение отношения Ср /Су для воздуха методом Клемана и Дезорма.
 - 4. Определение Ср /Су по скорости звука в газе.
- 5. Определение коэффициента поверхностного натяжения методом пластинки Вильгельми.
 - методические указания к выполнению и оформлению лабораторных работ.

В ходе выполнения общего физического практикума следует руководствоваться следующими правилами, предписывающими единую форму оформления отчетов студентами и порядок выполнения ими лабораторных работ. Эти правила распространяются при работе студентов в лаборатории «Молекулярная физика».

Так, порядок выполнения лабораторных работ включает в себя следующие пункты:

- 1. Регистрация и получение учебного задания (преподаватель).
- 2. Ознакомление с основами теории исследуемого явления (описание лабораторной работы и рекомендуемая литература).
- 3. Изучение экспериментальной установки, правил работы с приборами, правил техники безопасности на рабочем месте (инженер лаборатории).
 - 4. Изучение порядка выполнения работы (преподаватель).
- 5. Получение допуска к выполнению работы (контрольные вопросы Приложения 1) (преподаватель).
- 6. Выполнение измерений или задания и проверка на «разумность» полученных результатов.
 - 7. Проверка расчетов и согласование результатов с преподавателем.
- 8. Оформление работы (письменный отчет) в отдельной тетради или двойном тетрадном листе бумаги в клеточку по установленной форме.
 - 9. «Сдача» лабораторной работы преподавателю.
- 10. Оценивание. 1-ая оценка экспериментальная часть работы, 2-ая теоретическая часть работы и ее оформление или общий зачет.

Письменный отчет о проделанной лабораторной работе должен содержать:

- 1. Регистрационный номер и название работы.
- 2. Цель работы.
- 3. Приборы и оборудование.
- 4. Краткая теория (основная формула, закон и т.д.).
- 5. Схема (рис.) экспериментальной установки (с краткими пояснениями).
- 6. Результаты измерений (таблица, график и т.п.).
- 7. Вычисления (цифровая подстановка).
- 8. Расчет погрешности.
- 9. Вывод (с записью найденного значения физической величины с указанием погрешности).
- требования к рейтинг-контролю. В течение семестра два раза (на модульных неделях) необходимо:
- сдать преподавателю решения домашних задач, полученных из указанных сборников задач,

- ответить на вопросы. Пример вопросов:
- 1. Как объяснить с точки зрения молекулярно-кинетической теории тепловое расширение тел?
 - 2. Обоснуйте закон Дюлонга и Пти.
- 3. Сформулируйте закон равнораспределения кинетической энергии по степеням свободы.
- 4. Назовите процессы, приводящие к остыванию нити накаливания лампочки при снятии тока.
 - 5. Почему СР и СV для твердых тел близки друг к другу?
 - 6. Каков физический смысл числа Рейнольдса?
 - 7. Напишите и объясните формулу Ньютона для внутреннего трения.
 - 8. Напишите формулу для коэффициента вязкости идеального газа.
- 9. На чем основан метод нагретой нити для определения коэффициента теплопроводности газов?
- 10. Выведите расчетную формулу для определения коэффициента теплопроводности методом нагретой нити.
- 11. Как оценить среднюю длину свободного пробега и эффективный диаметр молекулы газа, используя явление теплопроводности?
 - 12. От чего зависит скорость понижения температуры тела при охлаждении?
- 13. Покажите, что коэффициенты объемного расширения \square и линейного расширения \square однородного изотропного вещества связаны соотношением $\square = 3\square$.
- 14. Как, зная коэффициент объемного расширения \square и изотермический модуль объемной упругости $KT = \square V(\square P/\square V)T$ однородного и изотропного вещества, определить температурный коэффициент давления $\square = (1/P)(\square P/\square T)V$? Давление P предполагается известным.
 - 15. Какова область применимости закона Дюлонга и Пти.
 - 16. Выведите соотношение между СУ и СР для общего случая.
- 17. Почему при строительстве магистральных газопроводов используют трубы большого диаметра, а не увеличивают давление газа при его транспортировании.