Документ подписан проМИННИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ Информация о владельце:

ФИО: Смирнов Сергей Николаевич

РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: врио реквора БОУ ВО «ТВЕРСКОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» дата подписания: 10.07.2024 12:02:42

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООГ

Б.Б.Педько

2024 г.

Рабочая программа дисциплины

Фазовые переходы

Закреплена за

Физики конденсированного состояния

кафедрой:

Направление 03.03.02 Физика

подготовки:

Направленность Физика, технологии и компьютерное моделирование

(профиль): функциональных материалов

Квалификация: Бакалавр

Форма обучения: очная

Семестр: 6

Программу составил(и):

канд. физ.-мат. наук, доц., Большкова Наталья Николаевна

Attouces

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели освоения дисциплины (модуля):

«Фазовые переходы» является описание физических свойств объектов и из-чение фазовых переходов в конденсированных средах, методов их описания, а также рассмотрение различных аспектов их практического применения.

Задачи:

являются:

□ формирование представлений об основных понятиях фазовых переходов в физике конденсированного состояния;

□ ознакомление обучающихся с классическими подходами к описанию фазовых переходов в жидких и ферромагнитных средах, к изучению свойств систем вблизи фазовых переходов, освоению теории фазовых переходов Ландау и современных направлений в теории фазовых переходов;

 \Box получение практического опыта анализа физических процессов, изучаемых в курсе физики конденсированного состояния вещества, с точки зрения теории фазовых переходов

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Цикл (раздел) ОП: Б1.В

Требования к предварительной подготовке обучающегося:

Дифференциальные уравнения

Молекулярная физика

Электричество и магнетизм

Кристаллография

Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Преддипломная практика

Научно-исследовательская работа

Физика нелинейных кристаллов

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость	2 3ET
Часов по учебному плану	72
в том числе:	
аудиторные занятия	42
самостоятельная работа	22

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ПК-2.2: Анализирует физические явления и процессы в области физики конденсированного состояния и составляет отчет по теме исследования или по результатам проведенных экспериментов

Уровень 1 физические явления и процессы в области физики конденсированного состояния

Уровень 1 составлять отчет по теме исследования или по результатам

проведенных экспериментов

Уровень 1 необходимыми знаниями и умениями для анализа физических явлений и процессов в области физики конденсированного состояния

УК-1.1: Анализирует задачу, выделяя ее базовые составляющие

Уровень 1 задачу, выделяя ее базовые составляющие

Уровень 1 анализировать задачу, выделяя ее базовые составляющие

Уровень 1 методами решения задачи, выделяя ее базовые составляющие

5. ВИДЫ КОНТРОЛЯ

Виды контроля	в семестрах	κ:
зачеты		6

6. ЯЗЫК ПРЕПОДАВАНИЯ

Язык преподавания: русский.

7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код	Наименование разделов и	Вид	Семестр	Часов	Источ-	Примечан-
занят.	тем	занятия	/ Kypc	IACOD	ники	ие
	-		, ==J P =			
	Раздел 1. Введение. Сведения					
	из термодинамики.	_	_	_		
1.1	Основные законы и уравнения	Лек	6	2	Л1.1Л2.1	
	термодинамики.				Л3.1 Л3.2	
	Характеристические функции,					
	химический потенциал, его					
	связь со свободной энергией					
	Гиббса.					
	Системы с дополнительными					
	параметрами. Уравнение					
	состояния сложной системы,					
	идеальная сложная система. Характеристические функции					
	сложной системы. Основы					
	термодинамики магнетиков и					
	диэлектриков.					
1.2	Основные законы и уравнения	Cn	6	2		
1.2	термодинамики.	Ср		2		
	Характеристические функции,					
	химический потенциал, его					
	связь со свободной энергией					
	Гиббса.					
	Системы с дополнительными					
	параметрами. Уравнение					
	состояния сложной системы,					
	идеальная сложная система.					
	Характеристические функции					
	сложной системы. Основы					
	термодинамики магнетиков и					
	диэлектриков.					
	Раздел 2. Термодинамика					
	фазовых превращений.					

2.1	Экстремальные критерии равновесия. Критерии устойчивости однородной системы: детерминант и коэффициент устойчивости, бинодаль и спинодаль, функция отклика. Равновесие фаз гетерогенной системы, диаграмма равновесия. Уравнение Клапейрона - Клаузиуса. Фазовые переходы, их классификация по Эренфесту, фазовые переходы II рода. Уравнение Эренфеста		6	4	
2.2	Экстремальные критерии равновесия. Критерии устойчивости однородной системы: детерминант и коэффициент устойчивости, бинодаль и спинодаль, функция отклика. Равновесие фаз гетерогенной системы, диаграмма равновесия. Уравнение Клапейрона - Клаузиуса. Фазовые переходы, их классификация по Эренфесту, фазовые переходы П рода. Уравнение Эренфеста	Пр	6	2	
2.3	Экстремальные критерии равновесия. Критерии устойчивости однородной системы: детерминант и коэффициент устойчивости, бинодаль и спинодаль, функция отклика. Равновесие фаз гетерогенной системы, диаграмма равновесия. Уравнение Клапейрона - Клаузиуса. Фазовые переходы, их классификация по Эренфесту, фазовые переходы II рода. Уравнение Эренфеста		6	4	
	Раздел 3. Классическая теория критических явлений. Теория конденсации Ван-дер-Ваальса.				

Уравнение Ван-дер-Ваальса в приближении среднего поля. Изотерма флюида Ван-дер-Ваальса, экспериментальные изотермы, правило Максвелла, критическая точка, бинодаль и спинодаль, флюида Ван-дер-Ваальса. Приведенное уравнение Ван-дер-Ваальса и есте-ственные состояния. Основы теории подобия: основные теоремы, критерии подобия. Термодинамическое подобие.	Лек	6	4	
Уравнение Ван-дер-Ваальса в приближении среднего поля. Изотерма флюида Ван-дер-Ваальса, экспериментальные изотермы, правило Максвелла, критическая точка, бинодаль и спинодаль, флюида Ван-дер-Ваальса. Приведенное уравнение Ван-дер-Ваальса и естественные состояния. Основы теории подобия: основные теоремы, критерии подобия. Термодинамическое подобие.	Пр	6	2	
Уравнение Ван-дер-Ваальса в приближении среднего поля. Изотерма флюида Ван-дер-Ваальса, экспериментальные изотермы, правило Максвелла, критическая точка, бинодаль и спинодаль, флюида Ван-дер-Ваальса. Приведенное уравнение Ван-дер-Ваальса и естественные состояния. Основы теории подобия: основные теоремы, критерии подобия. Термодинамическое подобие.	Ср	6	4	
Раздел 4. Ферромагнитное превращение				

	**			
4.1	Сведения из статистической физики: квантовая сумма состояний и ее связь со свободной энергией системы. Магнетик Изинга, поле Вейсса, параметр порядка. Описание перехода "ферро-магнетикпарамагнетик", точка Кюри. Приближение Брегга-Вильямса в теории ферромагнитного превращения. Изотермы конденсации и намагничивания в окрестности критической точки.	6	4	
4.2	Сведения из статистической физики: квантовая сумма состояний и ее связь со свободной энергией системы. Магнетик Изинга, поле Вейсса, параметр порядка. Описание перехода "ферро-магнетикпарамагнетик", точка Кюри. Приближение Брегга-Вильямса в теории ферромагнитного превращения. Изотермы конденсации и намагничивания в окрестности критической точки.	6	2	
4.3	Сведения из статистической физики: квантовая сумма состояний и ее связь со свободной энергией системы. Магнетик Изинга, поле Вейсса, параметр порядка. Описание перехода "ферро-магнетик-парамагнетик", точка Кюри. Приближение Брегга-Вильямса в теории ферромагнитного превращения. Изотермы конденсации и намагничивания в окрестности критической точки.	6	4	
	Раздел 5. Макроскопические свойства вблизи критической точки.			

	Τ	I	I	Γ.	ı
5.1	Термодинамическое описание	Лек	6	4	
	систем в окрестности				
	критической точки,				
	критические индексы.				
	Критическая изотерма,				
	изотермическая				
	-				
	проницаемость, параметр				
	порядка и теплоемкость,				
	флюида Ван-дер-Ваальса в				
	окрестности критической				
	точки, критические индексы.				
	Критическая изотерма,				
	магнитная восприимчивость,				
	параметр порядка и				
	теплоемкость магнетика Брегга-				
	1				
	Вильямса, критические				
	индексы.				
5.2	Термодинамическое описание	Пр	6	4	
	систем в окрестности] -			
	критической точки,				
	критические индексы.				
	Критическая изотерма,				
	изотермическая				
	проницаемость, параметр				
	порядка и теплоемкость,				
	флюида Ван-дер-Ваальса в				
	окрестности критической				
	точки, критические индексы.				
	Критическая изотерма,				
	магнитная восприимчивость,				
	параметр порядка и				
	теплоемкость магнетика Брегга-				
	Вильямса, критические				
	индексы.				
5.3	Термодинамическое описание	Ср	6	4	
	систем в окрестности	1			
	критической точки,				
	критические индексы.				
	l -				
	<u> </u>				
	изотермическая				
	проницаемость, параметр				
	порядка и теплоемкость,				
	флюида Ван-дер-Ваальса в				
	окрестности критической				
	точки, критические индексы.				
	Критическая изотерма,				
	магнитная восприимчивость,				
	параметр порядка и				
	теплоемкость магнетика Брегга-				
	Вильямса, критические				
	индексы.				
	Раздел 6. Феноменологическая				
	теория фазовых переходов II				
	рода.				
•	L ~~]		

7 111 00100	oz monto i i monto monto prim energia zoz mpi			
6.1	Разложение Ландау, основные допущения. Линии и изолированные точки фазовых переходов II рода. Разложение Ландау для основного ферромагнетика. Критические индексы для параметра порядка критической изотермы, магнитной восприимчивости и теплоемкости. Критическая точка флюида в приближении Ландау. Параметр порядка и "полевой" параметр. Уравнение состояния в околокритической области, критическая изотерма, критическая изотерма, критические индексы. Фазовые переходы в сегнетоэлектриках. Зависимость типа перехода от знака коэффициента 3 члена разложения Ландау. Критическая точка Кюри (□ - точка). Фазовый переход I рода, близкий к критической точке Кюри. Флуктуационная теория фазовых переходов II рода. Переход и плотности большого	6	6	
	критическая изотерма,			
	-			
	1 -			
	1 * '			
	потенциала, учет флуктуаций			
	параметра порядка,			
	приближение Орнштейна-			
	Цернике. Сведения из			
	термодинамической теории			
	флуктуаций, флуктуации			
	Фурье- компонент дисперсии параметра порядка. Корреляция			
	флуктуаций, корреляционная			
	функция и радиус корреляций.			
	Критические индексы, с			
	флуктуацией.			
	Границы применимости			
	разложения Ландау, критерий			
	Гинзбурга. Сингулярность			
	критической точки. Сравнение феноменологической теории с			
	экспериментом и результатами			
	точных расчетов для модельных			
	систем			
	<u> 1</u>			1

	77 17			1 '
6.2	Разложение Ландау, основные допущения. Линии и изолированные точки фазовых переходов II рода. Разложение Ландау для основного ферромагнетика. Критические индексы для параметра порядка критической изотермы, магнитной восприимчивости и теплоемкости. Критическая точка флюида в приближении Ландау. Параметр порядка и "полевой" параметр. Уравнение состояния в околокритической области, критическая изотерма, критические индексы. Фазовые переходы в сегнетоэлектриках. Зависимость типа перехода от знака коэффициента 3 члена разложения Ландау. Критическая точка Кюри (□ точка). Фазовый переход I рода, близкий к критической точке Кюри. Флуктуационная теория фазовых переходов II рода. Переход и плотности большого потенциала, учет флуктуаций параметра порядка, приближение Орнштейна-Цернике. Сведения из термодинамической теории флуктуаций, флуктуации Фурье- компонент дисперсии параметра порядка. Корреляция	6	4	
	1			
	. •			
	1			
	1*			
	_ * ·			
	Флуктуационная теория			
	1			
	, <u>1</u>			
	_			
	флуктуаций, корреляционная			
	функция и радиус корреляций.			
	Критические индексы, с			
	флуктуацией. Границы применимости			
	разложения Ландау, критерий			
	Гинзбурга. Сингулярность			
	критической точки. Сравнение			
	феноменологической теории с			
	экспериментом и результатами			
	точных расчетов для модельных			
	систем			

6.3	Разложение Ландау, основные	_	6	4	
	допущения. Линии и				
	изолированные точки фазовых				
	переходов II рода. Разложение				
	Ландау для основного				
	ферромагнетика. Критические				
	индексы для параметра порядка				
	критической изотермы,				
	магнитной восприимчивости и				
	теплоемкости. Критическая				
	точка флюида в приближении				
	Ландау. Параметр порядка и				
	"полевой" параметр.				
	Уравнение состояния в				
	околокритической области,				
	критическая изотерма,				
	критические индексы. Фазовые				
	переходы в сегнетоэлектриках.				
	Зависимость типа перехода от				
	знака коэффициента 3 члена				
	разложения Ландау.				
	Критическая точка Кюри (-				
	точка). Фазовый переход І рода,				
	близкий к критической точке				
	Кюри.				
	Флуктуационная теория				
	фазовых переходов ІІ рода.				
	Переход и плотности большого				
	потенциала, учет флуктуаций				
	параметра порядка,				
	приближение Орнштейна-				
	Цернике. Сведения из				
	термодинамической теории				
	флуктуаций, флуктуации				
	Фурье- компонент дисперсии				
	параметра порядка. Корреляция				
	флуктуаций, корреляционная				
	функция и радиус корреляций.				
	Критические индексы, с				
	флуктуацией.				
	Границы применимости				
	разложения Ландау, критерий				
	Гинзбурга. Сингулярность				
	критической точки. Сравнение				
	феноменологической теории с				
	экспериментом и результатами				
	точных расчетов для модельных				
	систем				
	Denvey 7 Comment				
	Раздел 7. Современные				
	направления в теории фазовых				
	переходов.				

7.1	Феноменологические	Лек	6	4	
/.1			U	-	
	неравенства для критических индексов. Гипотеза				
	однородности Уидома. Гипотеза масштабной				
	инвариантности, скейлинговые				
	законы в формулировке				
	Каданова, формулировка				
	Вильсона. Роль размерностей				
	систем и параметра порядка,				
	универсальные				
	закономерности. Элементы				
	синергетика и процессы				
	самоорганизации. Текущее				
	равновесие по Берталанфи в				
	открытых системах.				
	Диссипативные структуры.				
	Ячейка Бонэра и гене-рация				
	лазера на примере				
	кинетических структур.				
	Условия возникновения				
	диссипативных структур.				
	Критерий эволюции				
	Пригожина-Глансдорфа. Н-				
	теорема нелинейной				
	неравновесной термодинамики				

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные материалы для проведения текущей аттестации

см Приложение 1

8.2. Оценочные материалы для проведения промежуточной аттестации

См приложение 1

8.3. Требования к рейтинг-контролю

Рейтинг

- 1. Первая контрольная точка. Содержание модуля 1: Раздел 1 3.
- 40 баллов, из них 20 текущая работа, 10 посещаемость, 10 контроль-ная работа. 9-ая неделя.
 - 2. Вторая контрольная точка. Содержание модуля 2: Раздел 4-7.
- 60 баллов, из них 40 текущая работа, 10 посещаемость, 10 контроль-ная работа. 18-ая неделя

Критерии: работа на каждом практическом занятии — по 5 баллов (теку-щая работа), правильный ответ на один вопрос контрольной работы — 2 балла.

Программой предусматривается выполнение письменных контрольных работ и отчеты о выполнении студентами заданий на лабораторных заня-тиях в качестве форм рубежного контроля в конце каждого модуля. Для подготовки к рубежному контролю предполагается выполнение домашних заданий по каждой пройденной в течение модуля теме и использование банка контрольных вопросов и заданий рабочей программы.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

9.1. Рекомендуемая литература

9.1.1. Основная литература

Шифр	Литература
Л1.1	Вшивков С. А., Фазовые переходы полимерных систем во внешних полях, Санкт-
	Петербург: Лань, 2022, ISBN: 978-5-8114-1529-8,
	URL: https://e.lanbook.com/book/211370

9.1.2. Дополнительная литература

Шифр	Литература			
Л2.1	Муртазаев, Рамазанов, Бадиев, Фазовые переходы в фрустрированной модели			
	Изинга на треугольной решетке, Тверь: Тверской государственный университет, ,			
	ISBN:,			
	URL: http://texts.lib.tversu.ru/texts/11809t.pdf			

9.1.3. Методические разработки

Шифр	Литература			
Л3.1	, Фазовые переходы, поверхностное натяжение, Нижний Новгород: ННГУ им. Н. И.			
	Лобачевского, 2019, ISBN:,			
	URL: https://e.lanbook.com/book/144906			
Л3.2	Прудников В. В., Вакилов А. Н., Прудников П. В., Фазовые переходы и методы их			
	компьютерного моделирования, Москва: Физматлит, 2009, ISBN: 978-5-9221-0961-1,			
	URL: https://biblioclub.ru/index.php?page=book&id=68374			

9.3.1 Перечень программного обеспечения

1	Kaspersky Endpoint Security 10 для Windows		
2	Adobe Acrobat Reader		
3	Google Chrome		
4	OpenOffice		

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Аудит-я	Оборудование			
3-228	комплект учебной мебели, переносной ноутбук, проектор, экран			
3-227	комплект учебной мебели, переносной ноутбук, проектор, экран			

11. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Самостоятельная работа студентов предполагает:

- -обязательное выполнение домашних заданий, предусмотренных лекци-онными и лабораторными занятиями;
- -углубленное изучение литературы и решение задач по пройденным те-мам и по вопросам, дополнительно указанным преподавателем;
- –использование материалов рабочей программы для систематизации зна-ний и подготовке к занятиям и контрольным работам.

Перечень вопросов для систематизации знаний:

1. Что называется: гомо и гетеросистемами; компонентами гетеросисте-мы;

фазой?

- 2. Что такое фазовый переход?
- 3. Признаки параметров системы?
- 4. Какие параметры различаются?
- 5. Уравнения состояния и их виды?
- 6. Зачем необходимы термопотенциалы? 7. Связь полного термопотенциала с химическим потенциалом?
- 8. Отличия сложных систем от простых. Уравнения термодинамики сложных систем, их структура.
 - 9. Уравнение состояния сложной системы. Идеальная сложная система.
 - 10. Термопотенциалы сложных систем.
 - 11. Обобщенные потенциалы.
 - 12. Критерии термодинамического равновесия.
 - 13. Условие равновесия фаз геторосистемы.
 - 14. Уравнение кривой равновесия.
 - 15. Диаграмма равновесия.
 - 16. Сущность приема, называемого «приближением среднего по-ля».
 - 17. Отличность уравнений Менделеева Клайперона и Ван- дер- Вальса.
 - 18. Отличия теоретической и опытной изотерм для реальных газов.
 - 19. Критическое состояние термосистемы.
 - 20. Отличие приведенного и обычного уравнений Ван- дер- Валь-са.
 - 21. Спинодаль и бинодаль.
 - 22. Модель Изинга.
 - 23. Гипотеза Вейсса.
 - 24. Модель Брегга- Вильямса.
 - 25. Отличия кривых H(□) и P(n) для магнетиков ВДВ- флюида.
 - 26. Что характеризуют критические индексы.
 - 27. Зачем вводятся критические индексы.

Фазовые переходы

YK-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Ном			
ер	Правильны		Критерии
зада	й ответ Содержание вопроса/задания		оценивания заданий
ния	(ключ)		оценивания задании
		Задания закрытого типа	
	1		Правильно выбран
	1		вариант ответа – 1
			балл
1		2. Переход системы из одного фазового состояния в	o will
1		другое без изменения внешних условий	
		3.Изменения состояния системы при определенном	
		давлении	
			Правильно выбран
			вариант ответа – 1
_			балл
2		2.Величины, характеризующие систему однозначно	
		количественно	
		3. Величины, не входящие в систему	
	2	Какие существуют термодинамические потенциалы	Правильно выбран
			вариант ответа – 1
			балл
3		2.Внутренняя энергия, свободная энергия, энтальпия,	
		полный термодинамический потенциал	
		3Давление, свободная энергия, энтальпия, полный	
		термодинамический потенциал	TT
			Правильно выбран
		1 1	вариант ответа – 1
4	дополнительными параметрами		балл
4	2. Система, состояние которой определяется параметрами P,V,T		
		3. Система, состояние которой, определяется только	
		дополнительными параметрами	
		Общий критерий равновесия системы	Правильно выбран
			вариант ответа – 1
			балл
		параметров	
5		2. Равенство нулю термодинамического потенциала,	
		который характеристичен для данных параметров	
		3. условие минимума того термодинамического	
		потенциала, который характеристичен для данных	
		параметров	
		Для чего нужны критические индексы	Правильно выбран
		1. для определения параметров системы вдали от фазового	
_		•	балл
6		2.для определения параметров системы вблизи фазового	
		перехода	
		3. для определения микроскопических свойств системы	
		вблизи фазового перехода	Прорукку честь
		Уравнение Ван-дер-Ваальса для реальных газов 1. PV=RT	Правильно выбраны
7	3		все варианты – 1 балл;
		$\begin{array}{ccc} 2. & P(V-0)=RT \\ 3. & (P+aV^{-2})(V-b)=RT \end{array}$	valili,
		J. ([+a v](v -U)−K]	

			правильно выбрана
			половина вариантов– 0,5 балла;
			о, з оалла; правильно выбрано
			меньше половины
			вариантов - 0
	1	Что такое спинодаль	Правильно выбран
		1. Граница устойчивого состояния системы	вариант ответа – 1
8	1	2. Граница неустойчивого состояния системы	вариант ответа – т балл
		2. Граница неустоичивого состояния системы 3. Граница между двумя системами	Oalili
<u> </u>	+	5. Граница между двуми спетемами	Правильно выбран
9			вариант ответа – 1
7			вариант ответа – 1 балл
-	 	+	
10			Правильно выбран
10			вариант ответа – 1
			балл
		Задания открытого типа	
		Энтальпия – это	Правильный ответ – 1
1			балл
Прав	ильный отве	т (ключ)	
	оте – випап		
_	Внутренняя	н энергия –это	Правильный ответ – 1
2		1	балл
Прав	। вильный отве	or (KIIOII)	
_			******
Бнут	ренняя энсрі	гия –это все виды энергии частиц, составляющих част	гицу
3	Фаза – это_		Правильно выбраны
	ильный отве		все соответствия – 1
Фаза	. – это физи	ически однородная часть системы, отделенная от др	ругих балл;
	иц фазовой гј		правильно выбрано
•			половина и больше
			соответствий -0.5
			балла;
			правильно выбрано
			меньше половины
			соответствий – 0
			баллов;
4	Классифика	ция фазовых переходов	Правильный ответ – 1
	ильный отве		балл
		разовых переходов – 1 и 2 рода	
5		ие индексы это	Правильный ответ – 1
_	ильный отве	балл	
		ексы это величины, характеризующие скорость измен	
		и фазового перехода	
	PV=RT – эт	Правильный ответ – 1	
		внение Менделеева-Клапейрона для 1 моля идеального	
1 ,	XI 510 ypun	эпение менделеева-тенанепрона дзя т мозя идеального	U I dadomiri
7	Привеленны	не параметры - это	Правильный ответ – 1
		раметры – это его величина, отнесенная к критичес	
_	ению ению	James phi 310 eto besin inna, officeedinar a aprili 125	CROWLY Carlot
		-дер-Ваальса – это	Правильный ответ – 1
8	Флионд Ван	дер Вишьей 510	балл

Флюі	ид Ван-дер-Ваальса – это система, подчиняющаяся уравнению Ван-дер-	
Ваалі	sca	

ΠK -2. Способен выполнять экспериментальную работу в области физики и оформлять результаты исследований и разработок

Номер задания	Правильный ответ (ключ)	Содержание вопроса/задания	Критерии оценивания заданий			
	Задания закрытого типа					
1	1	Почему уравнение Клапейрона- Клаузиуса не применимо к фазовым переходам 2 рода 1. Возникает неопределенность 0/0 2. Меняется скачком энтропия 3. Меняется скачком объем	Правильно выбран вариант ответа – 1 балл			
2	3	К каким фазовым переходам относится феноменологическая теория Ландау 1. К смешанным ФП 2. ФП 1 рода 3. ФП 2 рода	Правильно выбран вариант ответа – 1 балл			
3	2	Значение критического индекса для параметра порядка системы 1. 0 2. 0,5 3. 3	Правильно выбран вариант ответа – 1 балл			
4	3	Значение критического индекса для теплоемкости 1. 1 2. 3 3. 0	Правильно выбран вариант ответа – 1 балл			
5	1	Уравнение Эренфеста 1. Уравнение кривой равновесия для ФП 2 рода 2. Уравнение кривой равновесия для ФП 1 рода 3. Уравнения системы в состоянии равновесия	правильно выораны 3 соответствия — 0,75 балла; правильно выбраны 2 соответствия — 0,5 балла; правильно выбрано 1 соответствие — 0,25 балла.			
6	2	Почему при фазовых переходах I рода возможны метастабильные состояния системы 1. Из-за кооперативного эффекта 2. Из-за наличия зародышей новой фазы 3.Из-за нестабильности характеристик системы				
7	3	Зачем необходимы термопотенциалы	Правильно выбран вариант ответа – 1 балл			

8	1	1.описыват влияние в параметров 2.содержат дополнительные пар 3.содержат все характеристики о В основе теории подобия 1.Подобие геометрических фигу 2.Подобие параметров 3.подобие зависимостей	системы	Правильно выбран вариант ответа – 1 балл Правильно выбран вариант ответа – 1
9				балл
10				Правильно выбран вариант ответа – 1 балл
		Задания открытог	o muna	
Границы применимости разложения Ландау Правильный ответ (ключ) Границы применимости разложения Ландау – нахождение системы вблизи ФП			Правильный ответ – 1 балл	
		гга-Вильямса - это		Правильный ответ – 1 балл
	Брегга-Вилья	мса – это модель ферромаг	нитного	
3	Модель Из	винга описывает		Правильный ответ – 1 балл
Модель Изинга описывает положение частиц в магнетиках в				
магнит 4	ном поле Гипотеза Н	Dayaga ama		Правильный ответ – 1 балл
		наличие в магнетике магнитног	о попа	правильный ответ – г оалл
5		очка системы - это	KILOII O	Правильный ответ – 1 балл
		темы – это точка, соответст	BVWIIIaa	
		цествованию трёх фаз веществ		
6		ма равновесия —		Правильный ответ – 1 балл
Диагра		•	ражение	•
равнов	есного состоян			
7 Фазовый переход I рода -				Правильный ответ – 1 балл
Фазовый переход I рода это ФП при которой первые				
производные полного термоднамического потенциала терпят				
разрыв				
8 Фазовый переход I1 рода				
Фазовый переход 2 рода это ФП при которой первые производные полного термоднамического потенциала				
производные полного термоднамического потенциала непрерывны, а терпят разрыв 2 производные				
пепрерывны, а терият разрыв 2 производные				