МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО «ТВЕРСКОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио ректора

Дата подписания: **20.09**.202**2 12:03:5**6

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

УТВЕРЖДАЮ

Руководитель ООП

Ю.А. Рыжков

« 26 » августа 2022 г.

Рабочая программа дисциплины

БИОТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ ПРОИЗВОДСТВА И ПЕРЕРАБОТКИ РАСТИТЕЛЬНОГО СЫРЬЯ

Направление подготовки	19.03.02 Продукты питания из
-	растительного сырья
Наименование образовательной	Технология и экспертиза продуктов
программы (профиль)	растительного происхождения
Уровень образования	бакалавриат
Форма обучения	очная, заочная
Закреплена за кафедрой	Биохимии и биотехнологии

Вид учебной работы и	Очная форма	Заочная форма
форма контроля	курс, семестр	курс, сессия
Общая трудоёмкость дисциплины:	3 курс, 6 семестр	4 курс, летняя сессия
- в зачётных единицах	5	5
-в часах	180	180
Аудиторные занятия,	96	20
часов:		
-лекции	32	8
- практические занятия		12
- лабораторные работы	64	
Самостоятельная работа,	32	151
часов		
курсовая работа		
прочие виды	52	9
Зачёт		
Экзамен	*	*

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели освоения дисциплины (модуля):

подготовка специалистов для пищевой промышленности в области биотехнологии, обладающих современными теоретическими знаниями, способных формулировать научные и прикладные задачи и предлагать подходы для их решения.

Задачи:

- формирование у студентов умений и навыков оценки качества сырья, питательных сред, полупродуктов и целевых продуктов;
- овладение методами культивирования различных клеток в лабораторных и производственных условиях;
 - овладение основами современных методов выделения и очистки метаболитов;
 - развитие представлений об иммобилизации клеток микроорганизмов;
- формирование способности применять полученные знания, умения и навыки для реализации и управления биотехнологическими процессами

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Цикл (раздел) ОП: Б1.О

Требования к предварительной подготовке обучающегося:

Технологии пищевых ингредиентов из растительного сырья

Технология биологически активных веществ из растительного сырья

Методы исследования ингредиентов продуктов питания и биологически активных веществ

Основы биологии и микробиологии

Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Медико-биологические требования и санитарные нормы качества пищевых продуктов

Технология биологически активных веществ из растительного сырья Экспертиза продовольственного сырья и пищевых продуктов Генетически модифицированные продукты

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость	5 3ET
Часов по учебному плану	180
в том числе:	
аудиторные занятия	20
самостоятельная работа	151
часов на контроль	9

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-2.1: Использует в практической деятельности специальные знания фундаментальных разделов физики, химии, биологии, математики для освоения физических, химических, биохимических, биотехнологических, микробиологических, теплофизических процессов, происходящих при производстве продуктов питания из растительного сырья

Уровень 1 - современные достижения фундаментальных биологических наук и биотехнологии:

- основные промышленные и лабораторные способы культивирования про- и эукариотических клеток.
- Уровень 1 уметь выбирать оптимальные условия хранения штаммов-продуцентов; уметь подбирать питательные среды для культивирования конкретного штамма-продуцента.
- Уровень 1 навыками участия в научной дискуссии, принятия независимых суждений и самостоятельных решений, свободно ориентироваться в теоретической и методической базе, отстаивать свою точку зрения
- ОПК-2.2: Проводит измерения и наблюдения, составляет описания проводимых исследований, анализирует результаты исследований и использует их при написании отчетов и научных публикаций
 - Уровень 1 морфологические, физиологические и биохимические особенности функционирования биообъектов в лабораторных условиях;
 - общие принципы клеточной биотехнологии;
 - общие принципы культивирования микроорганизмов.
 - Уровень 1 оценивать применяемые на производстве и в лаборатории методы работы с рекомбинантными и дикими штаммами;
 - прогнозировать возможность использования научных результатов биотехнологии, экологической биотехнологии и других.
 - Уровень 1 практическими навыками культивирования биообъекта на питательных средах, контролировать ход процесса и получение конечного продукта.

ОПК-2.4: Применяет методы биотехнологического получения пищевых продуктов

- Уровень 1 -уметь использовать биотехнологические приемы для повышения эффективности процесса в пищщевой промышленности.
- Уровень 1 -основными понятиями и терминами промышленгной биотехнологии
- Уровень 1 способы культивирования микроорганизмов;
 - основные способы выделения целевого продукта из культуральной жидкости;
 - основные продуценты, используемые в пищевой промышленнорсти
- ОПК-2.5: Применяет методы биотехнологической переработки растительного сырья для получения качественной и безопасной пищевой продукции
 - Уровень 1 Владеет приемами определения биологической безопасности продукции биотехнологических производств
 - Уровень 1 ориентироваться в современной научной литературе по вопросам микробной и клеточной биотехнологии; использовать биотехнологические приемы для повышения эффективности процесса.
 - Уровень 1 общие принципы осуществления биотехнологических процессов;
- ОПК-4.1: Определяет и анализирует свойства сырья и полуфабрикатов, влияющие на оптимизацию технологического процесса и качество готовой продукции, ресурсосбережение, эффективность и надёжность процессов производства продуктов питания из растительного сырья
 - Уровень 1 основные нормативные документы, относящиеся к производству, контролю качества, соблюдению экологической безопасности, хранению, международным и отечественным стандартам применительно к получаемым биотехнологическими методами биологически активным веществам и лекарственным препаратам, а также биообъектам их продуцентам
 - Уровень 1 подбирать методы постадийного контроля и стандартизации биопрепаратов; подбирать методы иммобилизации клеток микроорганизмов для

решения ситуационной задачи;

учитывать влияние биотехнологических факторов на эффективность технологического процесса и качество конечного продукта;

Уровень 1 практическими навыками культивирования биообъекта на питательных средах, контролировать ход процесса и получение конечного продукта, т.е. навыками необходимыми для специалиста биотехнолога.

- ОПК-4.2: Использует методы технохимического и лабораторного контроля качества сырья, полуфабрикатов и готовых изделий
- ОПК-4.3: Анализирует причины, методы выявления и способы устранения брака в процессе производства продуктов питания из растительного сырья
- УК-8.1: Анализирует факторы вредного влияния элементов среды обитания (технических средств, природных и социальных явлений)
- УК-8.2: Идентифицирует опасные и вредные факторы в рамках осуществляемой деятельности
- УК-8.3: Выявляет угрозу условиям жизнедеятельности, природной среде и устойчивому развитию общества, связанную с нарушением техники безопасности
- УК-8.4: Разъясняет правила поведения при возникновении чрезвычайных ситуаций природного, техногенного происхождения и возникновении военных конфликтов

5. ВИДЫ КОНТРОЛЯ

Виды контроля на курсах:	
экзамены	4

6. ЯЗЫК ПРЕПОДАВАНИЯ

Язык преподавания: русский.

7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

№	Наименование разделов и тем	Вид занятия	Сем.	Часов	Примечание
	Раздел 1. Современные достижения биотехнологии				
1.1	Введение в биотехнологию	Лек	4	1	
1.2	Современные биотехнологии в пищевой промышленности	Пр	4	2	
1.3	Особенности развития биотехнологии в главных регионах мира	Ср	4	2	
	Раздел 2. Методы общей бактериологии и биотехнологии				
2.1	Выделение микроорганизмов	Лек	4	2	
2.2	Выделение молочнокислых микроорганизмов из продуктов питания	Пр	4	4	
2.3	Современные методы идентификации микроорганизмов	Ср	4	2	
	Раздел 3. Биосинтетические процессы у микроорганизмов. Регуляция метаболизма				

2.1		T	14	14	
3.1	Спиртовое брожение	Пр	4	4	
3.2	Молочнокислое брожение	Лек	4	3	
3.3	Метаболизм микроорганизмов	Пр	4	2	
	Раздел 4. Основы селекции				
4.1	микроорганизмов	П	4	2	
4.1	Основы селекции микроорганизмов	Лек	4	2	
	Раздел 5. Основы биотехнологии				
5.1	Общая схема	Пр	4	2	
	биотехнологического				
	производства и ее				
	особенности.				
5.2	Сохранение организмов и клеточных культур	Лек	4	2	
5.3	Сырье в биотехнологии.	Лек	4	1	
5.4	Питательные среды	Пр	4	1	
5.5	Принципы составления питательных сред в биотехнологическом производстве	Пр	4	2	
5.6	Подготовка и стерилизация питательных сред	Пр	4	1	
5.7	Получение посевного материала	Лек	4	2	
5.8	Аппаратурное	Ср	4	2	
	оформление	•			
	биотехнологического процесса.				
5.9	Культивирование микроорганизмов	Лек	4	2	
5.10	Основы культививрования в режиме	Ср	4	2	
5 11	хемостата	П	4	1	
5.11	* * * * * * * * * * * * * * * * * * *	Лек	4	4	
5 12	биотехнологических процесах	П	1	5	
5.12	Основные биотехнологические процессы в	Лек	4	5	
5.13	пищевой промышленности Бродильные производства	Лаб	4	4	
3.13		51a0	7	7	
5.14	Основные разделы GMP и GLP	Лаб	4	2	
5.15	Биотехнологические	Ср	4	4	
	процессы, основанные	_			
	на получении				
	биомассы				
	микроорганизмов.				
5.16	Биотехнологические	Ср	4	4	
	процессы, основанные	1			
	на получении				
	продуктов				
	метаболизма				
	микроорганизмов				
	THE COST WITH SHOP				

	T=	ı	1	
	Раздел 6. Клеточная биотехнология			
6.1	Использование культуры клеток и тканей	Пр	4	2
	для решения			
	теоретических вопросов физиологии,			
	биохимии и генетики растений			
6.2	Принципы культивирования растительных	Лек	4	6
	клеток и тканей			
6.3	Типы культур клеток и тканей	Пр	4	3
0.0		P		
6.4	Получение протопластов растений	Пр	4	3
0.1	l l l l l l l l l l l l l l l l l l l	Пр		
6.5	Рост клеток в культуре	Ср	4	1
0.5	TOCT KICTOR B RYJIBTYPC	СР	_	
6.6	Клеточные технологии для получения	Cn	4	5
0.0	1	Ср	_	
	ЭКОНОМИЧЕСКИ			
	важных веществ растительного			
-	происхождения Раздел 7. Экологическая биотехнология			
	раздел 7. Экологическая оиотехнология			
7.1	A	C	4	4
7.1	Аэробная и анаэробная очистка сточных	Ср	4	4
	ВОД	C	4	
7.2	Компостирование и биодеградация	Ср	4	2
	растительных отходов			
7.3	Биоремидиация водных и почвенных	Ср	4	4
	систем			
7.4	Методы экологической биотехнологии	Лек	4	2
	Раздел 8. Проведение контроля			
8.1		Экзамен	4	36

Образовательные технологии

При составлении курса используются различные образовательные технологии, которые открывают для педагога новые возможности в преподавании своего предмета, а также в значительной степени облегчают работу, повышают эффективность обучения, позволяют улучшить качество преподавания.

- 1)При обучении при защите лабораторных работ используется дискуссия, целенаправленное, коллективное обсуждение темы лабораторной работы. Она предполагает совместное обсуждение полученных результатов. Выявляет многообразие точек зрения обучающихся, формирует собственный взгляд на проблему, а также позволяет выявить ошибки, которые были допущены при выполнении лабораторных работ.
- 2) При подготовке лекционного материала осуществляется подбор и создание информационных продуктов, подбор готовых образовательных медиаресурсов, создание собственного продукта (презентационного, обучающего, тренирующего или контролирующего).
- 3) Традиционные технологии (активное слушание) всегда использууются в занятиях лекционного типа.
- 4) Кейс-технологии в этом курсе объединяют в себе одновременно и ролевые игры, и ситуативный анализ. Осуществляется анализ конкретных ситуаций, ситуационные задачи. Также на лекциях практикуется дискуссия о современных методах исследования и этических проблемах в биотехнологии. Список образовательных технологий

1 Активное слушание	
---------------------	--

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные материалы для проведения текущей аттестации

- 1. Актиномицеты по методу Грамму
- А) не окрашиваются
- Б) окрашиваются положительно
- В) окрашиваются отрицательно
- 2. Метод метаболической селекции это
- А) многоступенчатый циклический процесс, включающий стадии анализа и стадии генетического конструирования
 - В) генетический анализ селекционированных штаммов
- С) процесс применения индуцированного мутагенеза и отбор среди мутантов нужного фенотипа
 - 3. Целью геномного шафлинга является
 - А) создание штамма с полезными мутациями и отсутствием всех вредных мутаций
 - В) создание штамма с нужным фенотипом
 - С) создание ауксотрофных штаммов
 - 4. Что называется направленной мутацией?
 - А) биотехнология замены определенного нуклеотида в гене методами генной инженерии
 - В) перенос части наследственной молекулы одного организма в ДНК другого организма
 - С) перенос соединения отрезка ДНК особой структуры с хромосомой и выделение его из хромосомы
 - 5. Лимитирующий фактор, определяющий температурный режим стерилизации среды
 - А) споры бактерий
 - Б) бактерии
 - В) вирусы
 - Г) компоненты питательной среды
 - 6. Недостатком стерилизации ультрафиолетом является:
 - А) использование токов высокой частоты
 - Б) использование только прозрачных растворов
 - В) использование высоких температур
 - 7. Очистку воздуха, используемого для ферментации, можно осуществить
 - А) благодаря инерционным силам осаждения
 - Б) благодаря силе тяжести
 - В) благодаря ультрафиолетовым лучам
 - 8. Трансверсия –
 - А) выпадение части генетического материала
 - Б) изменения в пределах одного гена
 - В) замена одного пурина на другой
 - Г) замена одного пиримидина на другой
 - 9. Ароматобразующими бактериями в закваске в производстве масла являются
 - A) Bacillus

- Б)Leuconostoc
- B) Clostridium
- 10. Первый раздел правил GMP-
- А) «Обеспечение качества»
- Б) «Терминология»
- В) «Валидация»
- Г) « Отдел технического контроля»
- 11. Нитрогеназа сложный фермент,
- А) участвующий в процессе окисления аммиака до азотной кислоты
 - Б) участвующий в процессе нитратов до нитритов
- В) участвующий в процессе восстановления азота до аммиака
- 12. Изобразите открытые многоступенчатые гомогенно-непрерывные системы культивирования со сложной цепью питания
 - 13. Подберите соответствующие пары:
 - 1. Автоклавирование
 - 2. Дробная стерилизация
 - а) нагревание до 60-80оС
 - б) 105-130оС + давление 1-2 атм
 - в) трехкратная обработка текучим паром
 - г) обработка в сушильном шкафу при 140-180оС
 - 14. Гетеротрофные прокариоты могут использовать
 - А) органический N и неорганический С
 - Б) неорганический С и неорганический N
 - В) органический С и неорганический N
- 15. Бактерии, восстанавливающие молекулярный азот до аммиака с последующим включением его в состав органических веществ называются ______.
 - 16. Основным биогенным элементом является
 - А) углерод
 - Б) азот
 - В)фтор
 - Г)цинк
 - Д) сера
 - 17. К хорошо растворимым углеродсодержащим веществам относятся
 - А) органические кислоты
 - Б) кашалотовый жир
 - В) крахмал

- 18. Посевной материал это
- А) культура, которую используют для выделения целевого продукта
- Б) культура, которую используют для внесения в производственный ферментатор
- В) культура, которую используют для селекции
- 19. Отделение конидий от основной массы мицелия и среды при получении посевного материала производят в
 - А) фильтре
 - Б) циклоне
 - В) вибросепараторе
 - 20. Источниками углерода являются:
 - А) кукурузный экстракт
 - Б) дрожжевой автолизат
 - В) крахмал
 - Г) соевая мука
 - Д)меласса
 - 21. Для уплотнения питательных сред добавляют
 - А) кремнекислый гель (силикагель)
 - Б) крахмал
 - В) каррагинаны
 - Г) отвар мясной
 - 22. К физическим методам пеногашения относят
 - А) уменьшение аэрации
 - Б) распыление питательной среды
 - В) внесение пеногасителя
 - Г) перепад давления
- 23. В режиме хемостата при каком условии концентрация биомассы в реакторе будет наибольшей? (необходимо поставить математический знак). Объясните почему?
 - u D
 - 24. К факторам роста микроорганизмов относят
 - А) биотин
 - Б) глюкозу
 - В) фосфолипид
 - 25. На каком этапе развития биотехнологии появились производства антибиотиков:
 - А) Биотехнический
 - Б) Эмпирический
 - В) Этиологичекий
 - Г) Генноинженерный
 - Д) период наноструктур
 - 26. К бактериям относят:

- А) молочнокислые микроорганизмы
 - Б) инфузорию туфельку
- А) пенициллиум
- В) бациллы
- 27. Нутристат заключается
- А) в регулировании подачи питательной среды в аппарат, таким образом, чтобы поддерживать постоянное значение растворенного кислорода в среде
- Б) в регулировании подачи питательной среды в аппарат, таким образом, чтобы поддерживать заданное значение концентрации субстрата
- В) в регулировании подачи питательной среды в аппарат, таким образом, чтобы поддерживать заданное значение биомассы в реакторе
 - 28. К родовому названию микроорганизма относят
 - A) Bacillus subtilis
 - Б) Bacillus
 - B) Bacillaceae
 - Γ) Bacillus subtilis ΒΚΠΜ B-695
- 29. При получении чистой культуры мезофильных спорообразующих микроорганизмов используют
 - А) химические методы накопления культур
 - Б) физические методы накопления культур
 - В) биологические методы накопления культур
 - 30. Лимитирующим фактором в режиме турбидостата является
 - А) химическая концентрация одного из элементов питательной среды
 - Б) концентрация биомассы
 - В) концентрация посевного материала

8.2. Оценочные материалы для проведения промежуточной аттестации

- 1. Температура размножения мезофилов:
- А) 0-20 градусов
- Б) 20- 45 градусов
- В) 45-70 градусов
- Г) 70- 100 градусов
- 2. Споры микроорганизмов можно хранить:
- а) в лиофильном виде
- б) в сыпучем материале
- в) в питательной среде
- г) в транспортных средах
- 3. По типу питания бактерии бывают:
- а) барофилы
- б) сапрофиты
- в) анаэробы
- г) диплобактерии
- 4. Автотрофы потребляют в качестве источника углерода
- А. диоксид углерода
- Б. углеводы
- В. органические вещества
- Г. аминокислоты и белки
- Д. липиды
- 5. К бактериям относят:
- А) молочнокислые микроорганизмы
- Б) инфузорию туфельку

- В) бациллы
- 6. L-высушивание -это
- А) высушивание микроорганизмов на носителях
- Б) вакуумная сушка микроорганизмов из жидкого состояния
- В) вакуумная сушка микроорганизмов из твердого состояния
- 7. Перечислите основные методы выделения микроорганизмов. Запишите суть каждого метода.
 - 8. Направленный мутагенез это:
- целенаправленное использование определенных мутагенов ДЛЯ внесения специфических изменений в кодирующие последовательности ДНК
- b) целенаправленный отбор естественных штаммов микроорганизмов, обладающих полезными признаками
 - с) использование методов клеточной инженерии
- d) использование методов генной инженерии для внесения специфических изменений в кодирующие последовательности ДНК, приводящих к определенным изменениям в аминокислотных последовательностях целевых белков
 - е) направленное воздействие мутагенов на определенные белки-ферменты
 - 9. Установите соответствие. Питательные среды классифицируются:
 - А. По происхождению а) синтетические
 - Б. По составу
- б) накопительные
- В. По назначению
- в) простые
 - г) сложные д) искусственные
 - е) дифференциально-диагностические
 - ж) естественные
 - з) элективно-селективные
- 10. Метабиоз (мутализм) это
- А) это взаимоотношения, устанавливающиеся при совместном обитании в одной и той же среде двух или более видов микробов, при которых они не мешают друг другу в развитии, или когда такое совместное обитание является даже необходимым для них
- Б) форма сожительства, близкая к симбиозу. При метабиотических взаимоотношениях один вид микроорганизмов в процессе жизнедеятельности создает благоприятные условия для другого.
- это такие взаимоотношения, при которых совместно обитающие микроорганизмов оказывают угнетающее действие друг на друга
 - 11. Красная биотехнология:
 - А) используется в сфере современной селекции растений
 - Б) применяется в сфере приготовления лекарственных средств
 - В) охватывает сферу применения биотехнологий в химической промышленности
 - 12. Субкультивирование –
 - А) лиофилизация культуры микроорганизмов
 - Б) периодический пересев на свежие питательные среды
 - В) выращивание микроорганизмов на агаризованных средах
 - 13. В состав транспортных сред входят следующие компоненты
 - А) фосфатный буфер
 - Б) серная кислота
 - В) глюкоза
 - Г) молекулярный азот
- 14. Дополните фразу. Совокупность внешних признаков бактериальной клетки в конкретных условиях внешней среды - это. .. клетки
 - а) модификация
- в) плазмида
- д) генотип

- б) фенотип
- г) трансдукция
- е) мутация

8.3. Требования к рейтинг-контролю

Максимальная сумма рейтинговых баллов по учебной дисциплине, заканчивающейся экзаменом, по итогам семестра составляет 60.

Обучающемуся, набравшему 40-54 балла, при проведении итогов семестра - удовлетворительно.

Обучающемуся, набравшему 55-57 баллов, при проведении итогов семестра - хорошо. "Премиальные баллы"для выставления в экзаменационную ведомость- 15 баллов.

Обучающемуся, набравшему 58-60 баллов, при проведении итогов семестра - отлично. "Премиальные баллы"для выставления в экзаменационную ведомость- 27 баллов.

Премиальные баллы в других случаях не допускаются.

Обучающийся, набравший до 39 баллов включительно, сдает экзамен. При наличии документов, подтверждающих уважительные причины пропуска занятий, студент может отработать пропущенные занятия. Сроки и порядок определяет преподаватель.

Ответ обучающегося на экзамене оценивется суммой до 40 баллов.

В университете действует следующая шкала пересчета рейтинговых баллов для дисциплин, заканчивающихся экзаменом :

от 40 до 69 - "удовлетворительно".

от 70 до 84 - "хорошо"

от 85 до 100 - "отлично".

В ходе обучения предполагается проводить контрольные работы (тестов, кроссвордов, дискуссионных бесед и т.п.). Все работы будут оцениваться по 5 баллой шкале.

Критерии оценки

- 5 баллов выставляется студенту, полностью освоившему материал дисциплины в соответствии с учебной программой, включая вопросы, рассматриваемые в рекомендованной программой дополнительной справочно-нормативной, свободно владеющему основными понятиями дисциплины. Требуется полное понимание и четкость изложения ответов по предложенному вопросу и дополнительным вопросам.
- 4 балла заслуживает студент, ответивший до 90% материала и без ошибок на предложенные вопросы и показавший знания основных понятий дисциплины в соответствии с обязательной программой курса и рекомендованной основной литературой.
- 3 балла дан недостаточно полный и недостаточно развернутый ответ (менее 75%). Логика и последовательность изложения имеют нарушения. Допущены ошибки в раскрытии понятий, употреблении терминов. Студент не способен самостоятельно выделить существенные и несущественные признаки и причинно-следственные связи. Студент может конкретизировать обобщенные знания, доказав на примерах их основные положения только с помощью преподавателя. Речевое оформление требует поправок, коррекции.
- 2 балла дан неполный ответ, представляющий собой разрозненные знания по теме вопроса с существенными ошибками в определениях. Присутствуют фрагментарность, нелогичность изложения. Студент не осознает связь данного понятия, теории, явления с другими объектами дисциплины. Отсутствуют выводы, конкретизация и доказательность изложения. Речь неграмотная. Дополнительные и уточняющие вопросы преподавателя не приводят к коррекции ответа студента не только на поставленный вопрос, но и на другие вопросы дисциплины.
- 0-1 баллов выставляется студенту при полном отсутствии ответа и ответа не имеющего отношения к вопросу.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Рекомендуемая литература

Перечень программного обеспечения

1	Kaspersky Endpoint Security 10 для Windows
2	Adobe Acrobat Reader
3	Google Chrome
4	WinDjView
5	ABBYY Lingvo x5
6	OpenOffice

Современные профессиональные базы данных и информационные справочные системы

1	ЭБС ТвГУ
2	ЭБС BOOK.ru
3	ЭБС «Лань»
4	ЭБС IPRbooks
5	ЭБС «Университетская библиотека онлайн»
6	ЭБС «ЮРАИТ»
7	ЭБС «ZNANIUM.COM»
8	СПС "КонсультантПлюс"
9	СПС "ГАРАНТ"

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Аудит-я	Оборудование
5-308	мультимедийный комплекс, переносной ноутбук, учебная мебель
5-302	переносной мультимедийный комплекс, переносной экран, сито, мерные кувшины пласт., мерные стаканы, раковина, доски полиэтиленовая разделочные, ножи
5-304	набор химических реактивов, химическая посуда (стаканы, пробирки, колбы, пипетки, мерные цилиндры и др.), газовые горелки, вытяжной шкаф, ph-метр,
5-307	Комплект учебной мебели, переносной ноутбук, переносной мультимедийный проектор
5-306	переносной мультимедийный комплекс, переносной ноутбук, стационарный экран, учебная мебель

11. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Изучение дисциплины осуществляется по следующим формам: лекции, лабораторные занятия и самостоятельная работа студента.

Важным условием для освоения дисциплины в процессе занятий является ведение конспектов, освоение и осмысление терминологии изучаемой дисциплины. Материалы лекционных занятий следует своевременно подкреплять проработкой соответствующих разделов в учебниках, учебных пособиях, в соответствии со списком основной и дополнительной литературы. Дополнительная проработка изучаемого материала проводится во время подготовки к лаборатоорным занятиям, в ходе которых анализируется и закрепляется основные знания, полученные по дисциплине.

При подготовке к лабораторным занятиям следует использовать основную и дополнительную литературу из представленного списка, а также методические указания по лабораторным работам, разработанных на кафедре биохимии и биотехнологии.

Планы лабораторных работ, их тематика, рекомендуемая литература, цель и задачи иъ изучения сообщаются преполявателем на вволных занятиях или в метолических

указаниях по данной дисциплине.

Прежде чем приступить к выполнению лабораторной работы, необходимо прокомментировать основные вопросы плана и хода выполнения лабораторной работы. Такой подход преподавателя помогает студентам понять ход выполнения экспериментальной части.

Лабораторное занятие включает этапы:

- 1й подготовка к лабораторной работе (подготовка теоретической части);
- 2й конспектирование лабораторной работы;
- 3й- выполнение экспериментальной части лабораторной работы;
- 4й- оформление резуотатов и написание вывода к лабораторной работе;
- 5й- защита лабораторных работ

Самостоятельная работа заключается в изучении отдельных тем курса по заданию преподавателя по рекомендуемой им учебной литературе, в подготовке к лабораторным; к текущему контролю успеваемости; подготовке к экзамену.

После вводных лекций, в которых обозначается содержание дисциплины, ее проблематика и практическая значимость, студентам выдаются задания на лабораторные занятия. В рамках дисциплины выполняются 5 лабораторных работ. Студенты выполняют задания в часы СРС в течение семестра в соответствии с освоением учебных разделов. Защита выполненных заданий производится поэтапно в часы лабораторных занятий. Оценивание осуществляется по содержанию и качеству выполненного задания путем проведения устного опроса.