Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио ректора Министерство науки и высшего образования Российской Федерации

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad TD5500У ВО «Тверской государственный университет»

Утверждаю:

Руководитель ООП:

П.М. Пахомов

14 мая 2025

Рабочая программа дисциплины (с аннотацией)

УНИВЕРСИТЕ

Новые технологии в полимерах

Направление подготовки 04.04.01 Химия

Профиль подготовки Физическая химия

Для студентов 1 курса очной формы обучения

Составитель: д.х.н., Пахомов П.М.

I. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины является: знакомство студентов с последними достижениями в области науки о полимерах и теми важнейшими проблемами, которые еще предстоит решить, рассмотрение современных проблем теории полимеров, обсуждение важнейших тенденций в области синтеза и применения полимеров и биополимеров. При этом особое внимание будет уделено рассмотрению последних достижений в области создания новых полимерных материалов и технологий.

Задачами освоения дисциплины (или модуля) являются: фундаментальная "Высокомолекулярные дисциплина соединения", научная заключается в том, что полимерное состояние - особая форма существования веществ, которая в основных физических и химических проявлениях качественно отличается от низкомолекулярных веществ. Поэтому главное внимание в данном курсе уделяется рассмотрению последних достижений в области создания и изучения новых полимерных материалов с уникальными свойствами. Большие цепное размеры И строение макромолекул обуславливают появление ряда важных специфических свойств, которые определяют практическую ценность полимеров как материалов, а также их биологическое значение.

Программа курса включает 11 основных разделов:

- 1. Введение
- 2. Выдающиеся ученые-полимерщики и их вклад в науку о полимерах
 - 3. Полимерные растворы, расплавы и гели
 - 4. Проблемы упрочнения полимерных материалов. Гель-технология
 - 5. Супрамолекулярная химия, супрамолекулярные полимеры и гели
 - 6. Полимерные жидкие кристаллы
- 7. Полимерные композиты и нанотехнология. Аллотропные формы углерода
 - 8. Полимерные волокна и нетканые материалы
 - 9. Полимерные световоды
 - 10. Дендримеры, гиперразветвленные полимеры и полимерные щетки
 - 11. Полимеры и биополимеры в медицине

В ходе обучения проводятся следующие виды аудиторных занятий: лекции, семинарские занятия, консультации, контрольные работы, зачет и экзамен. Усвоение теоретических знаний требует посещения лекций, серьезной самостоятельной работы с учебником, и проверяется на контрольных работах по изучаемым темам.

Отдельные темы теоретического курса прорабатываются студентами самостоятельно в соответствии с планом самостоятельной работы и конкретными заданиями преподавателя с учетом индивидуальных особенностей студентов.

2. Место дисциплины в структуре ООП

Дисциплина входит в Элективные дисциплины 4 обязательной части Блока 1. «Дисциплины» учебного плана.

Учебная дисциплина «Новые технологии в полимерах» содержательно она закладывает основы знаний для освоения дисциплин базовой части («Актуальные задачи современной химии», «Нанохимия»).

3. Объем дисциплины 4 зачетных единиц, **144** академических часа, **в том числе:**

контактная аудиторная работа: лекции - 15 часов, лабораторные работы - 45 часов, в т. ч. лабораторная практическая подготовка – 45 часов;

самостоятельная работа: 57, контроль - 27.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты	Планируемые результаты обучения по
освоения образовательной	дисциплине
программы (формируемые	
компетенции)	
ОПК-1	ОПК-1.1. Использует существующие и
Способен выполнять	разрабатывает новые методики получения
комплексные	и характеризации веществ и материалов
экспериментальные и расчетно-	длч решения задач в избранной области
теоретические исследования в	химии или смежных наук;
избранной области химии или	ОПУ 1.2 Использует современное
смежных наук с	ОПК-1.2. Использует современное
использованием современных приборов, программного	оборудование, программное обеспечение и профессиональные базы данных для
обеспечения и баз данных	решения задач в избранной области
профессионального назначения	-
профессионального назначения	химии или смежных наук.
ОПК-2	ОПК-2.1. Проводит критический анализ
Способен анализировать,	результатов собственных
интерпретировать и обобщать	экспериментальных и расчетно-
результаты экспериментальных	теоретических работ в избранной области
и расчетно-теоретических работ	химии или смежных наук;

в избранной области химии или	ОПК-2.2. Формулирует заключения и			
смежных наук	выводы по результатам анализа			
	литературных данных, собственных			
	экспериментальных и расчетно-			
	теоретических работ в избранной области			
	химии или смежных наук.			
ОПК-4	ОПК-4.2 Представляет результаты своей			
Способен готовить публикации,	работы в устной форме на русском и			
участвовать в	английском языке.			
профессиональных дискуссиях,				
представлять результаты				
профессиональной				
деятельности в виде научных и				
научно-популярных докладов				

5. Форма промежуточной аттестации и семестр прохождения: экзамен во 2-м семестре.

6. Язык преподавания русский.

II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

У	чебная программа	Всего		Контактная работ	а (час.)	Самостоят
	 наименование разделов и тем 	(час.)	Лекции	Практические занятия/	Контроль самостоятельной работы	ельная работа, в том числе Контроль (час.)
1.	Введение	6	1	0	0	0
2.	Выдающиеся ученые- полимерщики и их вклад в науку о полимерах	6	1	0	1	3
3.	Полимерные растворы, расплавы и гели	12	2	10	1	6
4.	Проблемы упрочнения полимерных материалов. Гель-технология	12	1	8	1	3
5.	Супрамолекуляр ная химия, супрамолекуляр ные полимеры и гели	12	1	2	1	3

6.	Полимерные жидкие кристаллы	16	2	2	1	6
7.	Полимерные композиты и нанотехнологии. Аллотропные формы углерода	14	2	3	1	6
8.	Полимерные волокна и нетканые материалы	15	1	5	1	6
9.	Дендримеры, гиперразветв-ленные полимеры и полимерные щетки	16	1	3	1	3
10	Полимерные световоды	21	2	12	1	6
11	Полимеры и биополимеры в медицине	14	1	0	1	5
И	ОГО	144	15	45	10	47

Ш. Образовательные технологии

Учебная программа –	Вид занятия	Образовательные технологии	
наименование разделов и			
тем (в строгом			
соответствии с разделом			
ІІ РПД)			
1. Введение	• лекция	• традиционные (фронтальная	
		лекция),	
		• информационные	
		(показ презентаций)	
		• технология модульного и	
		блочно-модульного обучения	
2. Выдающиеся ученые-	• лекция	• традиционные (фронтальная	
полимерщики и их вклад	• проверка домашних	лекция),	
в науку о полимерах	заданий	• информационные (показ	
		презентаций)	
		• технология модульного и	
		блочно-модульного обучения	
3. Полимерные растворы,	• лекция	• традиционные (фронтальная	
расплавы и гели	• решение задач и	лекция, решение упражнений),	
	упражнений	• информационные	
	• проверка домашних	(показ презентаций)	
	заданий	• технология исследовательской	
		деятельности (физический и	
		химический эксперимент)	
		• технология модульного и	
		блочно-модульного обучения	

1	Проблами	• 7077777	- mayyyyyyyy (haaymayyyya
4.	Проблемы упрочнения полимерных материалов. Гельтехнология	 лекция решение задач и упражнений проверка домашних заданий 	 традиционные (фронтальная лекция, решение упражнений), информационные (показ презентаций) технология исследовательской деятельности (физический и химический эксперимент) технология модульного и блочно-модульного обучения
5.	Супрамолекулярная химия, супрамолекулярные полимеры и гели	 лекция решение задач и упражнений проверка домашних заданий 	 традиционные (фронтальная лекция, решение упражнений), информационные (показ презентаций) технология исследовательской деятельности (физический и химический эксперимент) технология модульного и блочно-модульного обучения
6.	Полимерные жидкие кристаллы	 лекция решение задач и упражнений проверка домашних заданий 	 традиционные (фронтальная лекция, решение упражнений), информационные (показ презентаций) технология исследовательской деятельности (физический и химический эксперимент) технология модульного и блочно-модульного обучения
7.	Полимерные композиты и нанотехнологии. Аллотропные формы углерода	 лекция решение задач и упражнений проверка домашних заданий 	 традиционные (фронтальная лекция, решение упражнений), информационные (показ презентаций) технология исследовательской деятельности (физический и химический эксперимент) технология модульного и блочно-модульного обучения
8.	Полимерные волокна и нетканые материалы	 лекция решение задач и упражнений проверка домашних заданий 	 традиционные (фронтальная лекция, решение упражнений), информационные (показ презентаций) технология исследовательской деятельности (физический и химический эксперимент) технология модульного и блочно-модульного обучения
9.	Дендримеры, гиперразветвленные полимеры и полимерные щетки	 лекция решение задач и упражнений проверка домашних заданий 	 традиционные (фронтальная лекция, решение упражнений), информационные (показ презентаций) технология исследовательской деятельности (физический и химический эксперимент) технология модульного и блочно-модульного обучения

10. Полимерные световоды	 лекция решение задач и упражнений проверка домашних заданий 	 традиционные (фронтальная лекция, решение упражнений), информационные (показ презентаций) технология исследовательской деятельности (физический и химический эксперимент) технология модульного и блочно-модульного обучения
11. Полимеры и	• лекция	• традиционные (фронтальная
биополимеры в	• решение задач и	лекция),
медицине	упражнений	• информационные
	• проверка домашних	(показ презентаций)
	заданий	• технология модульного и
		блочно-модульного обучения

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Текущий контроль успеваемости

РАССЧЕТ БАЛЛОВ ПО ДИСЦИПЛИНЕ «НОВЫЕ ТЕХНОЛОГИИ В ПОЛИМЕРАХ» 1 модуль

No	Результат (индикатор)	Вид работы / способ	Критерии оценивания
1	ОПК-1.1	Тесты - 6	6 баллов (тест содержит
	ОПК-1.2		10 вопросов, 0.1 балл за 1
	ОПК-4.2		правильный ответ)
2		Коллоквиум №1	15 баллов (коллоквиум
			включает обсуждение
			ответов за тест – 7.5
			баллов, решение 10 задач
			7.5 баллов
3		Выполнение домашней	4
		работы	
4		Посещаемость	1
5		Работа на занятии	4
		Итого:	30

2 модуль

№	Результат (индикатор)	Вид работы / способ	Критерии оценивания
1	ОПК-1.1	Тесты - 5	6 баллов (тест содержит
	ОПК-1.2		10 вопросов, 0.15 баллов
	ОПК-4.2		за 1 правильный ответ)

2	Коллоквиум №2	15 баллов (коллоквиум
		включает обсуждение
		ответов за тест – 7.5
		баллов, решение 10 задач
		7.5 баллов
3	Выполнение домашней работы	4
4	Посещаемость	1
5	Работа на занятии	4
	Итого:	30
6	Экзамен	40 (10 заданий в билете
		по 4 балла)
	Итого за семестр	100 баллов

Текущий контроль успеваемости

1 модуль

Тест №1. Тема: «Введение»

Пример

- 1. Предмет и задачи курса Новые технологии в полимерах.
- 2. Когда и кто впервые ввел понятие «высокомолекулярные соединения)?
- 3. Как использовались полимеры до создания науки о полимерах?
- 4. Что такое макромолекула?

Ответ 1: Молекула полимера,

Ответ 2: Низкомолекулярные соединения, из которых образуются полимеры,

<u>Ответ 3</u>: Высокомолекулярные вещества, состоящие из больших молекул цепного строения.

5. Укажите структурное звено макромолекулы:

 \dots -CH₂-CH=CH-CH₂-CH=CH-CH₂-CH=CH-CH₂- \dots

Ответ 1: -CH₂-CH=CH-,

OTBET 2: $-CH=CH-CH_2-CH_2-$,

OTBET 3: =CH-CH₂-CH₂-CH=,

OTBET 4: $-CH_2-CH=CH-CH_2-$.

6. Когда, кто и какие полимеры были впервые синтезированы человеком?

Тест №2. Тема: «Выдающиеся ученые-полимерщики и их вклад в науку о полимерах» *Пример*

1. Основные исторические этапы становления науки о полимерах.

- 2. Назовите зарубежные и отечественные научные школы в области полимерных наук. Роль В.А. Каргина в становлении полимерной науки в СССР.
- 3. Лауреты Нобелевской премии по полимерам.

Тест №3. Тема: «Полимерные растворы, расплавы и гели»

Пример

1. Что такое полимерный гель?

Ответ 1: коллоидный раствор,

<u>Ответ 2</u>: двухкомпонентная система, состоящая из полимерной сетки, погруженной в низкомолекулярный растворитель,

Ответ 3: взаимопроникающие сетки.

- 2. Особенности молекулярного строения полимеров в различных фазово-агрегатных состояниях.
- 3. Использование полимерных гелей.

Тест №4. Тема: «Проблемы упрочнения полимерных материалов. Гель-технология»

Пример

- 1. Основные способы упрочнения полимеров
- 2. В чем суть кинетической теории прочности полимеров?
- 3. Прогноз долговечности полимерных материалов и конструкций.
- 4. Кто впервые разработал метод гель-технологии и с какой целью?
- 5. Основные стадии в методе получения высокопрочных волокон с помощью гель-технологии.

Тест №5. Тема: «Супрамолекулярная химия, супрамолекулярные полимеры и гели»

Пример

- 1. Ж.-М. Ленн основоположник супрамолекулярной химии. В чем суть супрамоленкулярной химии?
- 2. Что называется супрамолекулярным полимером?

Ответ 1: Полимер с высокими механическими свойствами,

<u>Ответ 2</u>: Полимер, состоящие из больших молекул цепного строения, но мономерные звенья в котором связаны слабыми нековалентными взаимодействиями.

- 3. Классификация супрамолекулярных полимеров и сферы их использования.
- 4. Супрамолекулярные гели и их отличие от полимерных гелей.

Тест №6. Тема: «Полимерные жидкие кристаллы»

Пример

1. Назовите основные типы жидких кристаллов:

Ответ 1: нематики, смектики и холестерики.

Ответ 2: дендримеры, полимерные щетки.

- 2. Области использования полимерных ЖК.
- 3. Упрочнение полиарамидов через ЖК состояние.

Коллоквиум №1. Тема: «Полимеры в гель-технологии и супрамолекулярной химии»

Пример

Задача 1. Что такое гель-технология? Основные технологические стадии получения сверхвысокопрочных волокон методом гель-технологии.

Задача 2. Кто впервые разработал метод гель-технологии и с какой целью?

Задача 3. Что называется супрамолекулярным полимером?

Ответ 1: Полимер с высокими механическими свойствами,

<u>Ответ 2</u>: Полимер, состоящие из больших молекул цепного строения, но мономерные звенья в котором связаны слабыми нековалентными взаимодействиями.

Задача 4. Классификации супрамолекулярных полимеров, их химическое строение.

Задача 5. Что такое тиксотропный супрамолекулярный гель?

2 модуль

Тест №1. Тема: «Полимерные композиты и нанотехнологии. Аллотропные формы углерода»

Пример

- 1. Классификация полимерных композитов и области применения.
- 2. Что такое нанокомпозиты и молекулярные композиты?
- 3. Что такое нанотехнологии? Их развитие.
- 4. Какие знаете аллотропные формы углерода?
- 5. Чем обусловлен интерес к фуллеренам, графенам и углеродным нанотрубкам?

Тест №2. Тема: «Полимерные волокна и нетканые материалы»

Пример

- 1. Синтетические, искусственные и природные волокна.
- 2. Волокна особого назначения (углеродные, арамидные, биоразлагаемые и др.).
- 3. Виды нетканых материалов и области использования.
- 4. Чем обусловлен повышенный интерес к нетканым материалам?

Тест №3. Тема: «Дендримеры, гиперразветвленные полимеры и полимерные шетки»

Пример

- 1. Дендримеры, полимерные щетки. В чем сходство и различие?
- 2. Где используются дендримеры, гиперразветвленные полимеры и полимерные щетки?

Тест №4. Тема: «Полимерные световоды»

Пример

1. Принцип работы полимерного световода:

Ответ 1: свет вдоль ядра световода распространяется за счет полного внутреннего отражения, Ответ 2: свет распространяется вдоль отражающей оболочки световода

- 2. Причины светопотерь в полимерном световоде и методы их снижения.
- 3. Области использования полимерных световодов.

Тест №5. Тема: «Полимеры и биополимеры в медицине»

Пример

- 1. Области использования синтетических полимеров в медицине.
- 2. Биополимеры и их роль в окружающей среде.
- 3. Какие природные полимеры и биополимеры знаете?
- 4. Биоразлагаемые полимеры и «Зеленая химия».

Коллоквиум №2. Тема: «Полимеры в нанотехнологии, волоконной оптике и «Зеленой химии»»

Пример

Задача 1. Классификация полимерных композитов и области применения. Что такое нанокомпозиты и молекулярные композиты? Что такое нанотехнологии? Их развитие.

Задача 2. Что такое волоконная оптика и полимерный световод? Пути повышения прозрачности полимерных световодов. Области использования полимерных световодов.

Задача 3. Что такое «Зеленая химия? Какие природные полимеры и биополимеры знаете? Биоразлагаемые полимеры и для чего они нужны? Где используются полимеры в медицине?

Экзамен

Пример экзаменационного билета

1. Что такое волоконная оптика и полимерный световод?

- 2. Что такое гель-технология? Основные технологические стадии получения сверхвысокопрочных волокон методом гель-технологии.
- 3. Классификация супрамолекулярных полимеров и области их использования.
- 4. «Зеленая химия» и биоразлагаемые полимеры.

Шкала оценивания выполнения индикаторов:

Индикатор считается выполненным, если либо во время текущей, аттестации студент набрал как минимум пороговое количество баллов за те виды активности, которые отвечают за данный индикатор.

	Индииотор	Текущая аттестация		Экзамен	
№	Индикатор	Порог	Максимум	Порог	Максимум
1	ОПК-1.1	20	60	20	40
	ОПК-1.2				
	ОПК-4.2				

Шкала и критерии выставления оценок за дисциплину:

Шкала выставления критерии оценок «ОТЛИЧНО», «хорошо», «удовлетворительно» и «неудовлетворительно» описаны локальной нормативной документации Тверского государственного университета (Положение рейтинговой системе обучения студентов $Tв\Gamma Y$). Положительная оценка может быть выставлена только в том случае, если выполнены все индикаторы.

V. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины:

1. Рекомендуемая литература

а) Основная литература:

1. Тагер А.А. Физико-химия полимеров. 2007. 4-е изд., перераб. и доп. Учеб. пособие для хим. фак. ун-тов / А. А. Тагер; под ред. А. А. Аскадского. - М.: Научный мир, 2007. - 573с.

$\underline{http://turbobit.net/7u9kxwwqampy.html}.$

2. Пахомов П.М. Основы физики и химии полимеров. 2016. 163 с. Тверь: ТвГУ (имеется в библиотеке ТвГУ).

б) Дополнительная литература:

1. Высокомолекулярные соединения : учебник и практикум для академического бакалавриата / под ред. А. Б. Зезина. — М.: Издательство Юрайт, 2016. — 340 с. — Серия : Бакалавр. Академический курс; ISBN 978-5-9916-5603-0. То же [Электронный ресурс]. - Режим доступа:

https://nashol.com/2017022893334/visokomolekulyarnie-soedineniya-zezina-a-b-2016.html

2. Киреев В.В. Высокомолекулярные соединения : учебник для бакалавров. — М.: Издательство Юрайт, 2013. — 602 с. — Серия : Бакалавр. Углубленный курс. ISBN 978-5-9916-2280-6. Режим доступа: http://static.ozone.ru/multimedia/book file/1009501915.pdf.

2. Программное обеспечение

- а) Лицензионное программное обеспечение:
- Microsoft Office профессиональный плюс 2013
- Microsoft Windows 10 Enterprise
- HyperChem
- Origin 8.1
- ISISDraw 2.4 Standalone
- б) Свободно распространяемое программное обеспечение Google Chrome

3. Современные профессиональные базы данных и информационные справочные системы

- 3FC «ZNANIUM.COM» www.znanium.com;
- ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/;
- ЭБС «Лань» http://e.lanbook.com

4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины:

- 1.Виртуальная образовательная среда ТвГУ (http://moodle.tversu.ru)
- 2. Научная библиотека ТвГУ (http://library.tversu.ru)
 - http://library.tversu.ru
 - http://www.iprbookshop.ru/
 - https://biblioclub.ru/
 - https://www.nature.com/ https://rd.springer.com/

VI. Методические указания для обучающихся по освоению дисциплины:

Учебная программа дисциплины «Актуальные проблемы науки о полимерах»

Тема 1. ВВЕДЕНИЕ

Исторический экскурс по проблеме формирования сравнительно молодой науки о полимерах. Основные этапы развития науки о полимерах.

Тема 2. ВЫДАЮЩИЕСЯ УЧЕНЫЕ-ПОЛИМЕРЩИКИ И ИХ ВКЛАД В НАУКУ О ПОЛИМЕРАХ

Герман Штаудингер – лауреат Нобелевской премии и основоположник науки о полимерах. Синтез Карозерсом на фирме «Дюпон» полиамидов, полиэфиров и др. синтетических полимеров. Открытие Уотсоном и Криком двойной спирали ДНК. Синтез Циглером и Наттой стереорегулярных полимеров.

Вклад российских ученых (Александров А.П., Журков С.Н., Кобеко П.П., Каргин В.А., Волькенштейн М.В., Коршак В.В. и др.) в развитие науки о полимерах.

Тема 3. ПОЛИМЕРНЫЕ РАСТВОРЫ, РАСПЛАВЫ И ГЕЛИ

Различные виды агрегатного состояния полимеров. Теоретические и экспериментальные данные о строении растворов, расплавов, гелей и блочного состояния полимеров.

Тема 4. ПРОБЛЕМЫ УПРОЧНЕНИЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ. ГЕЛЬ-ТЕХНОЛОГИЯ

Кинетическая теория прочности С.Н. Журкова. Достижения и проблемы в области создания высокопрочных полимерных материалов. Типы высокопрочных полимерных материалов и их применение. Прорыв в создании высокопрочных волокон их гибкоцепных полимеров с помощью метода гельтехнологии. Основные стадии получения волокон методом гельтехнологии. Получение сверхпористых и сверхнаполненных полимерных материалов (ксерогелей) с использование гельтехнологии.

Тема 5. СУПРАМОЛЕКУЛЯРНАЯ ХИМИЯ, СУПРАМОЛЕКУЛЯРНЫЕ ПОЛИМЕРЫ И ГЕЛИ

Разработка основ супрамолекулярной химии Ж.-М. Ленном. Использование идей супрамолекулярной химии при создании супрамолекулярных полимеров. Виды супрамолекулярных полимеров и их применение. Супрамолекулярные гели.

Тема 6. ПОЛИМЕРНЫЕ ЖИДКИЕ КРИСТАЛЛЫ

Типы полимерных ЖК и их применение. Упрочнение жесткоцепных полимеров через ЖК состояние. Высокопрочные волокна и пленки из полиарамидов и термотропных полиэфиров.

Тема 7. ПОЛИМЕРНЫЕ КОМПОЗИТЫ И НАНОТЕХНОЛОГИЯ. АЛЛОТРОПНЫЕ ФОРМЫ УГЛЕРОДА

Типы полимерных композитов и их использование. Нанокомпозиты. Развитие нанотехнологии. Открытие карбина, фуллерена, нанотрубок и графена. Их свойства и применение.

Тема 8. ПОЛИМЕРНЫЕ ВОЛОКНА И НЕТКАНЫЕ МАТЕРИАЛЫ Виды полимерных волокон, нетканых материалы и области использования.

Тема 9. ПОЛИМЕРНЫЕ СВЕТОВОДЫ

Развитие волоконной оптики. Принцип работы волоконного световода. Полимеры, используемые для производства оптических волокон. Преимущества и недостатки полимерных световодов перед кварцевыми и стеклянными. Причины светопотерь в полимерном оптическом волокне. Области использования полимерных световодов. Области использования полимерных световодов.

Тема 10. ДЕНДРИМЕРЫ, ГИПЕРРАЗВЕТВЛЕННЫЕ ПОЛИМЕРЫ И ПОЛИМЕРНЫЕ ЩЕТКИ

Синтез, строение и использование разветвленных полимеров.

Тема 11. ПОЛИМЕРЫ И БИОПОЛИМЕРЫ В МЕДИЦИНЕ

Использование полимеров в медицине. Виды биополимеров и их использование в медицине и биотехнологии.

Вопросы для подготовки к экзамену

- 1. Назовите ученых, внесших определяющий вклад в развитие науки о полимерах. Когда окончательно сформировалась наука о полимерах?
- 2. Назовите основные научные школы по полимерам.
- 3. Дайте классификацию полимеров.
- 4. Дайте классификацию известных супрамолекулярных полимеров.
- 5. Что такое тиксотропный супрамолекулярный гель?
- 6. Назовите особенности строения полимеров в различных фазовоагрегатных состояниях.
- 7. В чем суть метода гель-технологии?
- 8. Где используются высокопрочные полимерные волокна, полученные с помощью гель-технологии?
- 9. Дайте классификацию полимерных жидких кристаллов.
- 10.В чем суть метода упрочнения жесткоцепных полимеров через ЖК состояние?
- 11. Дайте классификацию полимерных композитов и способы их получения.
- 12. Что такое нанокомпозиты и нанотехнологии?
- 13. Чем обусловлен повышенный интерес к нетканым материалам?
- 14. Кто создал кинетическую теорию прочности полимеров?
- 15. Основы кинетической теории прочности.
- 16. Принцип действия полимерного световода и требования к полимерам, используемым при их изготовлении.
- 17. Где используются разветвленные полимеры?
- 18. Назовите области использования полимерных волокон особого назначения.
- 19. Причины светопотерь в полимерном световоде и методы их снижения.
- 20.Области использования полимерных световодов.
- 21. Области использования синтетических полимеров в медицине.
- 22. Биополимеры и их роль в окружающей среде.
- 23. Аллотропные формы углерода, примеры использования в нанотехнологиях.
- 24. Дендримеры, полимерные щетки. В чем сходство и различие?
- 25. Использование нетканых материалов в народном хозяйстве.
- 26. Актуальность получения биоразлагаемых полимеров.
- 27. Природные полимеры. Основные классы.
- 28. Бурное развитие нанотехнологии.
- 29. Основные пути упрочнения полимеров.
- 30. Классификация и использование ЖК полимеров.

- 31. Волоконная оптика на полимерах.
- 32. Метод гель-технологии.
- 33. Классификации супрамолекулярных полимеров, их химическое строение.
- 34. Лауреаты Нобелевской премии по полимерам.
- 35. Становление науки о полимерах. Исторические этапы.

VII. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине:

- 1. Лаборатория спектроскопии, оснащенная современным оборудованием по ИК и УФ спектроскопии, динамическому светорассеянию, вибрационной вискозиметрии, оптической микроскопии, а также компьютерами с выходом в Internet.
- 2. Таблицы, схемы, рисунки, фото.
- 3. Компьютерный кластер, позволяющий проводить квантовомеханические расчеты и молекулярное моделирование полимерных систем.
- 4. Раздаточный материал по наиболее важным темам курса.
- 5. Демонстрационный материал на слайдах по темам дисциплины.
- 6. Учебная аудитория с мультимедийной установкой
- 7. Компьютерный класс.

VIII. Сведения об обновлении рабочей программы дисциплины

№п	Обновленный	Описание внесенных	Реквизиты документа,
.П.	раздел рабочей	изменений	утвердившего
	программы		изменения
	дисциплины		
1.	Раздел III. Объем	Откорректированы академические	Протокол №11 от 28.04.21г.
	дисциплины.	часы лекций и практических занятий	заседания ученого совета
		согласно учебному плану на 2021-	химико-технологического
		2022 уч. год	факультета
2.			