Документ подписан промильность в Рисство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ Информация о владельце:

ФИО: Смирнов Сергей Николаевич

РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: врио ректора БОУ ВО «ТВЕРС КОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» дата подписания: 12.07.2024 11:20:03

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Б.Б.Педько

мая

2024 г.

Рабочая программа дисциплины

Физический практикум по механике

Закреплена за

Общей физики

кафедрой:

Направление

03.03.03 Радиофизика

подготовки:

Направленность Материалы и устройства радиоэлектроники

(профиль): (беспилотные системы, программно-аппаратные

Квалификация: Бакалавр

Форма обучения: очная

Семестр: 1

Программу составил(и):

старший преподаватель Котомкин Алексей Викторович

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели освоения дисциплины (модуля):

Целью освоения дисциплины является:

создать фундаментальную базу знаний и навыков для более углубленного проведения экспериментальных исследований при решении практических задач.

Задачи:

Задачами освоения дисциплины являются:

- Обучение методам анализа и объяснения наблюдаемых в лабораторном практикуме физических явлений;
- Обучение работе с приборами и оборудованием физической лаборатории, с современной измерительной аппаратурой;
 - Освоение различных методик физических измерений и экспериментов;
- Привить навыки экспериментального исследования физических явлений и процессов;
- Освоение процесса обработки экспериментальных данных, оценивания порядки изучаемых величин, определение точности и достоверности полученных результатов;
- Обучение основным принципам автоматизации и компьютеризации физического эксперимента, процессов сбора и обработки физической информации;
- Привить навыки оформления результатов эксперимента и составления отчётной документации;
- Изучение основных элементов техники безопасности при проведении экспериментальных исследований.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Цикл (раздел) ОП: Б1.О

Требования к предварительной подготовке обучающегося:

Механика

Математический анализ

Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Физический практикум по оптике

Физический практикум по электричеству и магнетизму

Физический практикум по молекулярной физике

Физический практикум по атомной физике

Физический практикум по физике атомного ядра и элементарных частиц

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость	3 3ET
Часов по учебному плану	108
в том числе:	
аудиторные занятия	68
самостоятельная работа	40

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-1.1: Обладает базовыми знаниями в области физики и радиофизики

- ОПК-1.3: Владеет экспериментальным аппаратом для ведения профессиональной деятельности: разработки и эксплуатации радиоэлектронных устройств, проведения научных исследований в области радиофизики
- ОПК-2.1: Планирует и проводит эксперментальные исследования по заданной теме с учетом имеющейся экспериментальной базы
- ОПК-2.3: Обрабатывает экспериментальные данные с применением специализированных программных продуктов
- ОПК-2.4: Проводит анализ экспериментальных данных используя базовые знания по физике
 - ОПК-2.5: Представляет экспериментальные данные в форме развернутого отчета
- УК-1.3: Осуществляет поиск информации для решения поставленной задачи по различным типам запросов
- УК-1.5: Рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки

5. ВИДЫ КОНТРОЛЯ

Виды контроля	в семестрах	:
зачеты		1

6. ЯЗЫК ПРЕПОДАВАНИЯ

Язык преподавания: русский.

7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код занят.	Наименование разделов и тем	Вид занятия	Семестр / Курс	Часов	Источ- ники	Примечан- ие
	Раздел 1. 1. Введение					
1.1	Введение. Основы техники безопасности. Правила работы в лабораториях Общего физического практикума. Основы учебного физического эксперимента. ЛР№1,2	Лаб	1	12	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
1.2	Самостоятельная работа по теме "Введение. Основы учебного физического эксперимента."	Ср	1	7	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
	Раздел 2. 2. Динамика поступательного движения					
2.1	Динамика поступательного движения. Законы Ньютона. ЛР № 5,7,15,12	Лаб	1	13	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
2.2	Самостоятельная работа по теме "Динамика поступательного движения"	Ср	1	7	Л1.1 Л1.2 Л1.3Л2.1 Л2.2	
	Раздел 3. 3. Законы сохранения в механике.					

3.1	Законы сохранения в механике. ЛР № 3,4,8, 9	Лаб	1	11	Л1.1 Л1.2 Л1.3Л2.1 Л2.2
3.2	Самостоятельная работа по теме "Законы сохранения в механике"	Ср	1	7	Л1.1 Л1.2 Л1.3Л2.1 Л2.2
	Раздел 4. 4. Динамика твердого тела				
4.1	Динамика твердого тела. ЛР № 6, 11, 14, 16, 17, 18	Лаб	1	11	Л1.1 Л1.2 Л1.3Л2.1 Л2.2
4.2	Самостоятельная работа по теме "Динамика твердого тела"	Ср	1	7	Л1.1 Л1.2 Л1.3Л2.1 Л2.2
	Раздел 5. 5. Деформации твердых тел.				
5.1	Деформации твердых тел. ЛР № 10	Лаб	1	12	Л1.1 Л1.2 Л1.3Л2.1 Л2.2
5.2	Самостоятельная работа по теме "Деформации твердых тел"	Ср	1	7	Л1.1 Л1.2 Л1.3Л2.1 Л2.2
	Раздел 6. 6. Волны в сплошной упругой среде.				
6.1	Волны в сплошной упругой среде. ЛР № 13	Лаб	1	9	Л1.1 Л1.2 Л1.3Л2.1 Л2.2
6.2	Самостоятельная работа по теме "Волны в сплошной упругой среде."	Ср	1	5	Л1.1 Л1.2 Л1.3Л2.1 Л2.2

Список образовательных технологий

1	Выполнение лабораторных работ
2	Информационные (цифровые) технологии
3	Методы группового решения творческих задач (метод Дельфи, метод 6–6, метод развивающей кооперации, мозговой штурм (метод генерации идей), нетворкинг и т.д.)

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные материалы для проведения текущей аттестации

См. Приложение 1

8.2. Оценочные материалы для проведения промежуточной аттестации

См. Приложение 1

8.3. Требования к рейтинг-контролю

Изучение курса заканчивается зачетом.

На первый модуль отводится 50 баллов, которые распределяются следующим образом:

- текущий контроль до 45 баллов;
- рубежный контроль 5 баллов.

На второй модуль отводится 50 баллов, которые распределяются следующим образом:

- текущий контроль до 45 баллов;
- рубежный контроль 5 баллов.

Текущий контроль проводится в форме выполнения и сдачи лабораторных работ.

Обучающемуся, набравшему 40 баллов и выше по итогам работы в семестре, выставляется «зачет». Обучающийся, набравший до 39 баллов, сдает зачет.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

9.1. Рекомендуемая литература

9.1.1. Основная литература

Шифр	Литература		
Л1.1	Бондарев, Калашников, Спирин, Курс общей физики в 3 кн. Книга 1: механика,		
	Москва: Юрайт, 2024, ISBN: 978-5-534-17167-9,		
	URL: https://urait.ru/bcode/535752		
Л1.2	Зисман Г. А., Тодес О. М., Курс общей физики. В 3 томах. Том 1. Механика.		
	Молекулярная физика. Колебания и волны, Санкт-Петербург: Лань, 2023, ISBN: 978-		
	5-507-47026-6,		
	URL: https://e.lanbook.com/book/320777		
Л1.3	Савельев И. В., Курс общей физики. В 3 томах. Том 1. Механика. Молекулярная		
	физика, Санкт-Петербург: Лань, 2023, ISBN: 978-5-507-48093-7,		
	URL: https://e.lanbook.com/book/341150		

9.1.2. Дополнительная литература

Шифр	Литература			
Л2.1	Семенова, Ляхова А. В., Зубкова А. Р., Новоселов, Механика, Тверь: Тверской			
	государственный университет, 2022, ISBN:,			
	URL: http://megapro.tversu.ru/megaPro/UserEntry?Action=FindDocs&ids=5462726			
Л2.2	Зубков, Учебно-методический комплекс по дисциплине "Общий физический			
	практикум. Механика", Тверь, 2012, ISBN:,			
	URL: http://texts.lib.tversu.ru/texts2/04277umk.pdf			

9.3.1 Перечень программного обеспечения

1	Adobe Acrobat Reader
2	OpenOffice
3	Kaspersky Endpoint Security 10 для Windows

9.3.2 Современные профессиональные базы данных и информационные справочные системы

1	ЭБС «ЮРАИТ»
2	ЭБС «Университетская библиотека онлайн»
3	ЭБС IPRbooks
4	ЭБС «Лань»
5	ЭБС BOOK.ru
6	ЭБС ТвГУ
7	ЭБС «ZNANIUM.COM»

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Аудит-я	Оборудование			
3-230	комплект учебной мебели, МФУ, компьютеры, переносной ноутбук, принтер,			
	огнетушитель			

11. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Методические материалы для обучающихся по освоению дисциплины

– список лабораторных работ

Лабораторные работы по курсам «Механика»

- 1. Измерение линейных размеров и плотности твердых тел правильной формы.
- 2. Изучение движения маятника Максвелла.
- 3. Определение ускорения силы тяжести методом оборотного маятника.
- 4. Определение модуля Юнга по изгибу стержня.
- методические указания к выполнению и оформлению лабораторных работ.

В ходе выполнения общего физического практикума следует руководствоваться следующими правилами, предписывающими единую форму оформления отчетов студентами и порядок выполнения ими лабораторных работ. Эти правила распространяются при работе студентов в лаборатории «Механика».

Так, порядок выполнения лабораторных работ включает в себя следующие пункты:

- 1. Регистрация и получение учебного задания (преподаватель).
- 2. Ознакомление с основами теории исследуемого явления (описание лабораторной работы и рекомендуемая литература).
- 3. Изучение экспериментальной установки, правил работы с приборами, правил техники безопасности на рабочем месте (инженер лаборатории).
 - 4. Изучение порядка выполнения работы (преподаватель).
- 5. Получение допуска к выполнению работы (контрольные вопросы Приложения 1) (преподаватель).
- 6. Выполнение измерений или задания и проверка на «разумность» полученных результатов.
 - 7. Проверка расчетов и согласование результатов с преподавателем.
- 8. Оформление работы (письменный отчет) в отдельной тетради или двойном тетрадном листе бумаги в клеточку по установленной форме.
 - 9. «Сдача» лабораторной работы преподавателю.
- 10. Оценивание. 1-ая оценка экспериментальная часть работы, 2-ая теоретическая часть работы и ее оформление или общий зачет.

Письменный отчет о проделанной лабораторной работе должен содержать:

- 1. Регистрационный номер и название работы.
- 2. Цель работы.
- 3. Приборы и оборудование.
- 4. Краткая теория (основная формула, закон и т.д.).
- 5. Схема (рис.) экспериментальной установки (с краткими пояснениями).
- 6. Результаты измерений (таблица, график и т.п.).

- 7. Вычисления (цифровая подстановка).
- 8. Расчет погрешности.
- 9. Вывод (с записью найденного значения физической величины с указанием погрешности).
- требования к рейтинг-контролю. В течение семестра два раза (на модульных неделях) необходимо:
- 1. сдать преподавателю решения домашних задач, полученных из указанных сборников задач,
 - 2. ответить на вопросы. Пример вопросов:
- 3. Получить формулу, определяющую силу, которую нужно приложить к центру масс цилиндра для того, чтобы его катить по горизонтальной поверхности с постоянной скоростью.
 - 4. Что называется центром удара?
- 5. Какое устройство называется физическим маятником? Написать уравнение движения физического маятника.
 - 6. Что называется приведенной длиной физического маятника?
 - 7. Как период колебания маятника зависит от положения точки подвеса?
- 8. Получить формулу для определения угловой скорости прецессии гироскопа с неподвижной точкой опоры.
- 9. Объясните причину устойчивости незакрепленного гироскопа и потерю устойчивости при закреплении гироскопа относительно вертикальной оси.
 - 10. В чем заключается правило Жуковского для гироскопического момента?
- 11. Оцените влияние массы груза и высоту его подъема на значение относительной погрешности момента инерции в опыте с маховым колесом.
- 12. Как на практике определить расстояние от точки подвеса баллистического маятника до центра удара пули?
- 13. Опишите схему опыта Лебедева по определению коэффициента сил трения качения.
 - 14. Как можно определить на практике центр качения стержня?
- 15. На каком принципе основано определение ускорения, вызванное силой тяжести, с помощью оборотного маятника?
- 16. Как в установке для изучения гироскопического эффекта отсчитываются углы прецессии?
- 17. Как с помощью крутильного маятника (унифилярный подвес) измерить момент инерции твердого тела?
- 18. Рассчитайте погрешность определения момента инерции в опыте с унифилярным подвесом. От чего она зависит?

Оценочные материалы для проведения текущей и промежуточной аттестации

Форма проведения экзамена: студенты, освоившие программу курса «Русский язык и культура речи» могут получить зачет по итогам семестровой и полусеместровой рейтинговой аттестации согласно «Положению о рейтинговой системе обучения ТвГУ» (протокол №8 от 30 апреля 2020 г.).

Если условия «Положения о рейтинговой системе ...» не выполнены, то экзамен сдается согласно «Положению о промежуточной аттестации (экзаменах и зачетах) обучающихся по программам высшего образования ТвГУ» (протокол №11 от 28 апреля 2021 г.)

Для проведения текущей и промежуточной аттестации:

- **УК-1.** Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач: УК-1.3. Осуществляет поиск информации для решения поставленной задачи по различным типам запросов;
- УК-1.5. Рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки.

Для всех индикаторов один способ аттестации:

Задание: дайте ответы на вопросы.

- 1. Можно ли, используя машину Атвуда, проверить справедливость второго закона Ньютона? Если да, то каким образом?
- 2. Предложите способ определения ускорения свободного падения с помощью машины Атвуда.
- 3. Дайте определение момента инерции твёрдого тела относительно оси и относительно полюса. Каким образом можно определить эти моменты в эксперименте?
- 4. Записать уравнения движения для маятника Максвелла.
- 5. Получите формулу для вычисления ускорения маятника Максвелла.
- 6. Дайте определение баллистическому маятнику.

- 7. Определите период колебаний баллистического маятника после попадания в него пули.
- 8. Что понимается под внутренним напряжением? Почему внутреннее напряжение является тензорной величиной?
- 9. Дайте определение модулю Юнга. Каков его физический смысл? В каких единицах он измеряется? Какие значения может принимать?
- 10. Какая деформация называется квазистатической?
- 11. Какой слой при плоском изгибе балки называется нейтральным?

Способ аттестации: письменный

Критерии оценки:

- ответ полный, указаны и учтены все факторы, признаки и т.д. -2 балла за вопрос
- аргументация допустимая, но имеются неточности 1 балл
- \bullet допущены грубые ошибки, свидетельствующие о непонимании темы -0баллов
- ОПК-1. Способен применять базовые знания в области физики и радиофизики и использовать их в профессиональной деятельности, в том числе в сфере педагогической деятельности:
- ОПК-1.1. Применяет базовые знания в области физико-математических наук для решения задач профессиональной деятельности.

Задание:

- 1. Как можно проверить справедливость уравнения вращательного движения с помощью маятника Обербека? провести соответствующие расчеты.
- 2. Получить формулу для момента инерции маятника Обербека.
- 3. Получите формулу для вычисления абсолютной погрешности ускорения в опыте с машиной Атвуда.
- 4. Как период колебания маятника зависит от положения точки подвеса?
- 5. Получить формулу для определения угловой скорости прецессии гироскопа с неподвижной точкой опоры.

- 6. Получить формулу, определяющую силу, которую нужно приложить к центру масс цилиндра для того, чтобы его катить по горизонтальной поверхности с постоянной скоростью.
- 7. Объясните причину устойчивости незакрепленного гироскопа и потерю устойчивости при закреплении гироскопа относительно вертикальной оси.

Способ аттестации: устный или письменный.

Критерии оценивания:

- ответ полный, указаны и учтены все факторы, признаки и т.д. 2 балла за вопрос
- аргументация допустимая, но имеются неточности 1 балл
- допущены грубые ошибки, свидетельствующие о непонимании темы 0 баллов
- ОПК-2. Способен проводить экспериментальные и теоретические научные исследования объектов, систем и процессов, обрабатывать и представлять экспериментальные данные:
- ОПК-2.1. Планирует и проводит экспериментальные исследования по заданной теме с учетом имеющейся экспериментальной базы;

Залание:

- 1. Как на опыте можно измерить величину момента инерции твердого тела относительно заданной оси вращения? Приведите конкретный пример с указанием расчетной формулы и порядком выполнения опыта.
- 2. Каким образом с помощью машины Атвуда можно проверить справедливость уравнения поступательного движения? Провести соответствующие расчеты, указав порядок выполнения эксперимента.
- 3. Момент импульса твердого тела. Тензор инерции твердого тела. Как можно найти тензор инерции на практике?
- 4. Провести измерения скорости пули с помощью баллистического маятника.

5. Как на практике определить расстояние от точки подвеса баллистического маятника до центра удара пули?

Способ аттестации: письменный

Критерии оценки:

- ответ полный, указаны и учтены все факторы, признаки и т.д. -2 балла за вопрос
- аргументация допустимая, но имеются неточности 1 балл
- допущены грубые ошибки, свидетельствующие о непонимании темы 0 баллов
- ОПК-2.3. Обрабатывает экспериментальные данные с применением специализированных программных продуктов;
- ОПК-2.4. Проводит анализ экспериментальных данных, используя базовые знания по физике;

Задание: дайте ответ на вопросы.

- 1. Какие измерения называются прямыми, а какие косвенными?
- 2. На какие группы делятся погрешности? Охарактеризовать каждую группу.
- 3. На примере вычисления плотности тела правильной геометрической формы показать, как вычислить абсолютную погрешность косвенных измерениях.
- 4. Используя машину Атвуда, изучить влияние массы блока.
- 5. Оценить, как измениться погрешность измерения момента инерции при увеличении массы перегрузка в опыте с машиной Атвуда?
- 6. Почему в формулу для момента инерции маятника Максвелла входит диаметр стержня маятника, а не диаметр диска? Зависит ли момента инерции маятника Максвелла от диаметра диска?
- 7. Предложите метод определения доли механической энергии, потерянной за один период колебаний маятника Максвелла.

- 8. Получите формулу для вычисления относительной погрешности вычисления момента инерции в опыте с маятником Максвелла.
- 9. Что называется стрелой прогиба балки, от чего она зависит? Как можно ее измерить на практике?
- 10. Как влияют значения диаметра стержня (балки) и ее длины на значение относительной погрешности модуля Юнга?
- 11. Маятник Обербека. Как можно проверить справедливость уравнения вращательного движения с его помощью?
- 12.Опишите схему опыта для определения момента инерции махового колеса.

Способ аттестации: письменный

Критерии оценки:

- ответ полный, указаны и учтены все факторы, признаки и т.д. 2 балла за вопрос
- аргументация допустимая, но имеются неточности 1 балл
- допущены грубые ошибки, свидетельствующие о непонимании темы 0 баллов
- ОПК-2.5. Представляет экспериментальные данные в форме развернутого отчета.

Задание:

1. Оформить лабораторную работу в соответствии с методическими указаниями. Представить ответы на контрольные вопросы.

Способ аттестации: письменный.

Критерии оценивания:

- работа оформлена согласно требованиям, представлены все разделы,
 проведены расчеты, построены графики, сформулирован грамотный вывод 5 баллов
- работа оформлена небрежно, есть ошибки в вычислениях,
 сформулирован вывод 3 балла

- работа оформлена небрежно, есть грубые ошибки, вывод неясно сформулирован и не согласуется с результатом работы – 1 балл
- работа оформлена частично, содержит много ошибок 0 баллов

требования к рейтинг-контролю. В течение семестра два раза (на модульных неделях) необходимо:

- 1. сдать преподавателю решения домашних задач, полученных из указанных сборников задач,
- 2. ответить на вопросы. Пример вопросов:
- 3. Получить формулу, определяющую силу, которую нужно приложить к центру масс цилиндра для того, чтобы его катить по горизонтальной поверхности с постоянной скоростью.
- 4. Что называется центром удара?
- 5. Какое устройство называется физическим маятником? Написать уравнение движения физического маятника.
- 6. Что называется приведенной длиной физического маятника?
- 7. Как период колебания маятника зависит от положения точки подвеса?
- 8. Получить формулу для определения угловой скорости прецессии гироскопа с неподвижной точкой опоры.
- 9. Объясните причину устойчивости незакрепленного гироскопа и потерю устойчивости при закреплении гироскопа относительно вертикальной оси.
- 10.В чем заключается правило Жуковского для гироскопического момента?
- 11.Оцените влияние массы груза и высоту его подъема на значение относительной погрешности момента инерции в опыте с маховым колесом.
- 12.Как на практике определить расстояние от точки подвеса баллистического маятника до центра удара пули?
- 13.Опишите схему опыта Лебедева по определению коэффициента сил трения качения.

- 14. Как можно определить на практике центр качения стержня?
- 15.На каком принципе основано определение ускорения, вызванное силой тяжести, с помощью оборотного маятника?
- 16. Как в установке для изучения гироскопического эффекта отсчитываются углы прецессии?
- 17. Как с помощью крутильного маятника (унифилярный подвес) измерить момент инерции твердого тела?
- 18. Рассчитайте погрешность определения момента инерции в опыте с унифилярным подвесом. От чего она зависит?