Документ подписан простой электронной подписью

Информация о владельце:

фио: Смирнов Сергей Министерство науки и высшего образования Российской Федерации

Должность: врио ректора

Дата подписания: 31.03.2025 15:27 ФГБОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

А.В. Солнышкин

2024 г.

Рабочая программа дисциплины (с аннотацией)

Статические и динамические свойства магнетиков

Направление подготовки

03.04.02 Физика

Направленность (профиль) Физика конденсированного состояния вещества

> Для студентов 1 курса, очной формы обучения

Составитель: к.ф.-.м.н., доцент Карпенков А.Ю.

І. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины является:

• Формирование у студентов системного подхода решению проблем получения сведений о магнитных свойствах ферромагнитных материалов на основании экспериментальной измерительной информации, полученной при исследовании объектов конечной формы

Задачами освоения дисциплины являются:

- Закрепление навыков применения алгоритмов получения и оценки достоверности информации о магнитных свойствах ферромагнитных материалов в постоянных и переменных магнитных полях.
- знакомство студентов со способами создания, поддержания и изменения температуры при исследовании температурных зависимостей основных магнитных характеристик МТМ материалов и изучение процессов структурного и магнитного старения при циклическом изменении температуры;
- получение сведений об обратимых и необратимых изменениях магнитных свойств исследуемых объектов (параметров температурной стабильности);
- получение практических навыков сравнительного анализа информации о магнитных свойствах ферромагнитных объектов, полученной в разных условиях намагничивания и перемагничивания объектов исследования;
- подготовить обучающихся к прохождению всех видов практик, выполнению научно-исследовательской и выпускной квалификационной работы.

2. Место дисциплины в структуре ООП

Дисциплина «Статические и динамические свойства магнетиков» относится к модулю Физика магнитных явлений Блока 1. Дисциплины части учебного плана, формируемой участниками образовательных отношений.

3. Объем дисциплины: <u>3</u> зачетные единицы, <u>108</u> академических часа, в том числе:

контактная аудиторная работа: лекции 30 часов, лабораторные работы <u>30</u> часов;

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения образовательной программы	Планируемые результаты обучения по дисциплине
(формируемые компетенции)	
ПК-3. Способен выполнять	ПК-3.1. Формулирует рекомендаций по
проектирование и разработку продукции в	изменению состава, структуры материалов, а
части, касающейся разработки объемных	также режимов и способов их обработки на основе
нанометаллов, сплавов и композитов на их	анализа моделей, характеризующих связь между
основе, а также выбора расходных и	эксплуатационными, технологическими и
вспомогательных материалов.	инженерными свойствами и параметрами состава
-	и структуры материала;
	ПК-3.2. Организует процесс измерения и
	испытания полученных образцов на контрольном,
	измерительном и испытательном оборудовании;
	ПК-3.3. Анализирует результаты испытаний
	образцов материалов.
ПК-5. Осуществление научного	ПК-5.1. Разрабатывает планы и методические
руководства проведением исследований	программы проведения исследований и разработок
по отдельным задачам.	по определенной тематике;
	ПК-5.2. Систематизирует и изучает научно-
	техническую информацию по теме исследования.
	ПК-5.3. Проводит анализ и теоретическое
	обобщение научных данных в соответствии с
	задачами исследования.

5. Форма промежуточной аттестации и семестр прохождения

Экзамен во 2 семестре.

6. Язык преподавания: русский.

П. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий.

1.Для студентов очной формы обучения

Учебная программа	Всего	Контактная работа (час.)				Самостояте
– наименование	(час.)				льная	
разделов и тем			работа, в			
						том числе
						Контроль
						(час.)
		Лекции Лабораторные работы				
		всего	в т.ч. ПП	всего	в т.ч. ПП	

1 17 0	T =		I	1 0	
1. Устройства для	5	2		2	1
проведения					
температурных					
исследований					
1.1. Принципы					
построения СМИ с					
высокотемпературны					
МИ И					
низкотемпературным					
и приставками:					
•высокотемпературн					
ые приставки;					
•низкотемпературные					
приставки. 1.2. Возможности	5	2		2	1
	3	2		2	1
создания					
универсальных источников					
температуры. 2. Понятие	5	2		2	1
)	<u> </u>		\ \(^{\alpha}	1
старения					
магнитных свойств					
магнитотвердых					
материалов:					
•структурное					
старение;					
•магнитное					
старение;					
•понятие					
температурной					
стабильности					
магнитных свойств					
магнитотвердых					
материалов.	-	2		2	2
3. Термический	6	2		2	2
магнитный фазовый					
анализ					
3.1. Понятие					
термического					
магнитного					
фазового анализа.					
3.2. Методы	6	2		2	 2
исследования					
температурных					
зависимостей					
магнитных свойств,					
используемые для					
измерения					
_					
температурных					
зависимостей					
магнитных свойств:					
•определение					
температур Кюри					
ферромагнитных					

фаз,					
присутствующих в					
объекте					
исследования;					
•температурных					
зависимостей					
структурно-					
нечувствительных					
магнитных свойств,					
используемых для					
количественных					
расчетов.					
3.3.	5	2	2		1
Прогнозирование	3	2	2		1
ошибки					
определения					
магнитных величин					
путем прямых и					
косвенных					
измерений, пути					
минимизации					
ошибки получения					
информации о					
МТМ (выработка					
навыков решения					
практических					
задач).					
4. Намагничивание	5	2	2		1
ферромагнитных					
материалов					
4.1. Виды кривых					
намагничивания,					
магнитная					
проницаемость,					
виды					
проницаемостей.					
*	5	2	2		1
4.2.	3	2	2		1
Прогнозирование					
механизмов					
намагничивания и					
перемагничивания					
ферромагнитных					
объектов по					
полевым					
зависимостям					
проницаемостей					
возрастания и					
убывания.					
4.3. Определение	8	3	3		2
рабочих параметров					
объектов					
исследования в					
последования в	<u> </u>		İ	İ	

магнитных					
измерениях	5	2	2		1
5. Особенности	3	2	2		1
поведения					
ферромагнетиков в					
переменных и					
постоянных					
магнитных полях					
5.1.					
Намагничивание					
ферромагнитных					
объектов в					
переменных и					
постоянных					
магнитных полях.					
5.2. Сравнительный	8	3	3		2
анализ статической					
и динамической					
основных кривых					
намагничивания					
магнитомягких					
ферромагнетиков.					
5.3. Исследование	6	2	2		2
изменения вида					
петли гистерезиса					
при комплексном					
перемагничивании					
магнитомягкого					
ферромагнетика.					
5.4. Изучение вида	6	2	2		2
зависимостей					
собственного поля					
размагничивания от					
намагниченности от					
геометрических					
размеров объектов					
исследования.					
5.5. Виды методы и	6	2	2		2
средства измерения]	_	_		·
магнитных величин					
(прогнозирование					
ошибки					
определения					
магнитных величин					
путем прямых и					
косвенных					
измерений).					
Экзамен	27				27
Итого	108	30	30		48
FITULU	100	50	50	<u> </u>	ru

III. Образовательные технологии

Учебная программах- наименование разделов и тем	Вид	занятия	Образовательные технологии
1. Устройства для проведения температурных исследований 1.1. Принципы построения СМИ с высокотемпературными и низкотемпературными приставками: •высокотемпературные приставки; •низкотемпературные приставки.	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
1.2. Возможности создания универсальных источников температуры.	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
2. Понятие старения магнитных свойств магнитотвердых материалов: •структурное старение; •магнитное старение; •понятие температурной стабильности магнитных свойств магнитотвердых материалов.	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
3. Термический магнитный фазовый анализ 3.1. Понятие термического магнитного фазового анализа.	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
3.2. Методы исследования температурных зависимостей магнитных свойств, используемые для измерения температурных зависимостей магнитных свойств: •определение температур Кюри ферромагнитных фаз, присутствующих в объекте исследования; •температурных зависимостей структурнонечувствительных магнитных свойств, используемых для количественных расчетов.	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
3.3. Прогнозирование ошибки определения магнитных величин путем прямых и	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение

косвенных измерений, пути минимизации ошибки получения информации о МТМ (выработка навыков решения практических задач).			теоретического материала Активное слушание. Групповое решение задач
4. Намагничивание ферромагнитных материалов 4.1. Виды кривых намагничивания, магнитная проницаемость, виды проницаемостей.	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
4.2. Прогнозирование механизмов намагничивания и перемагничивания ферромагнитных объектов по полевым зависимостям проницаемостей возрастания и убывания.	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
4.3. Определение рабочих параметров объектов исследования в магнитных измерениях	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
5. Особенности поведения ферромагнетиков в переменных и постоянных магнитных полях 5.1. Намагничивание ферромагнитных объектов в переменных и постоянных магнитных полях.	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
5.2. Сравнительный анализ статической и динамической основных кривых намагничивания магнитомягких ферромагнетиков.	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
5.3. Исследование изменения вида петли гистерезиса при комплексном перемагничивании магнитомягкого ферромагнетика.	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
5.4. Изучение вида зависимостей собственного поля размагничивания от намагниченности от геометрических размеров объектов исследования.	Лекции, работы	лабораторные	Изложение теоретического материала (презентация) Самостоятельное изучение теоретического материала Активное слушание. Групповое решение задач
5.5. Виды методы и средства	Лекции,	лабораторные	Изложение теоретического

измерения магнитных	работы	материала (презентация)	
величин (прогнозирование		Самостоятельное	изучение
ошибки определения		теоретического	материала
магнитных величин путем		Активное	слушание.
прямых и косвенных		Групповое решени	е задач
измерений).			

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Для проведения текущей и промежуточной аттестации:

- ПК-3. Способен выполнять проектирование и разработку продукции в части, касающейся разработки объемных нанометаллов, сплавов и композитов на их основе, а также выбора расходных и вспомогательных материалов:
- ПК-3.1. Формулирует рекомендаций по изменению состава, структуры материалов, а также режимов и способов их обработки на основе анализа моделей, характеризующих связь между эксплуатационными, технологическими и инженерными свойствами и параметрами состава и структуры материала;
- ПК-3.2. Организует процесс измерения и испытания полученных образцов на контрольном, измерительном и испытательном оборудовании;
- ПК-3.3. Анализирует результаты испытаний образцов материалов.;

Для всех индикаторов одинаковые способ оценки.

Задание:.

- 1. Описать способы измерения температуры исследуемых образцов при исследовании температурных зависимостей магнитных характеристик (объяснить преимущество использования дифференциальных методов).
- 2. В чем сходство и различие процессов структурного и магнитного старения постоянных магнитов (привести примеры и сравнительный анализ рассматриваемых процессов, указать способы восстановления уровня магнитных свойств до первоначального значения)?

Способ аттестации: устный

Критерии оценки:

- 1. Отсутствие умений
- 2. Частично освоенное умение

- 3. В целом успешно, но не систематически осуществляемое умение
- 4. В целом успешно, но содержащие отдельные пробелы умения
- 5. Сформированное умение

ПК-5. Осуществление научного руководства проведением исследований по отдельным задачам.

- ПК-5.1. Разрабатывает планы и методические программы проведения исследований и разработок по определенной тематике;
- ПК-5.2. Систематизирует и изучает научно-техническую информацию по теме исследования.
- ПК-5.3. Проводит анализ и теоретическое обобщение научных данных в соответствии с задачами исследования.

Задание:

- 1. Определить величину намагниченности постоянного магнита при 100 °C I_{100} если $I_0 = 12$ кГс, $\alpha_{200} = +0{,}012$ %·°C⁻¹, $\alpha_{100\text{-}200} = -0{,}02$ %·°C⁻¹, а $\beta_{200} = -10$ %.
- 2. Определить коэффициент обратимых изменений индукции α_{100} если $B_0 = 11$ к Γ с, $B_{100} = 9,8$ к Γ с, а коэффициент необратимых изменений индукции $\beta_{100} = 10\%$.

Способ аттестации: письменный

Критерии оценки:

- 1. Отсутствие умений
- 2. Частично освоенное умение
- 3. В целом успешно, но не систематически осуществляемое умение
- 4. В целом успешно, но содержащие отдельные пробелы умения
- 5. Сформированное умение

V. Учебно-методическое и информационное обеспечение дисциплины

- 1) Рекомендуемая литература
- а) Основная литература:

- 1. Боровик Е. С. Лекции по магнетизму / Е. С. Боровик, В. В. Еременко, А. С. Мильнер. Москва : ФИЗМАТЛИТ, 2005. 510 с. —[Электронный ресурс].- Режим доступа: http://biblioclub.ru/index.php?page=book&id=75475
- 2. Электричество и магнетизм: учебное пособие / Ш. А. Пиралишвили [и др.]. Электрон. дан. Санкт-Петербург : Лань, 2017. 160 с. [Электронный ресурс].- Режим доступа: https://e.lanbook.com/book/91880
- 3. А.Н. Зайдель. Ошибки измерений физических величин: учебное пособие. Изд. 3-е, стер. Санкт-Петербург [и др.] : Лань, 2009 (Архангельск). 106 с. —[Электронный ресурс].- Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=146
 - б) Дополнительная литература:
- 1. Метрология и средства измерений : учебное пособие / В. Ф. Пелевин. Минск : Новое знание ; М. : ИНФРА-М, 2017. 273 с. : ил. [Электронный ресурс]. Режим доступа:

http://znanium.com/go.php?id=774201

- 2. Вострокнутов Н. Н. Цифровые электроизмерительные приборы : учебное пособие / Н. Н. Вострокнутов. Москва : ACMC, 2011. 61 с. ISBN 978-5-93088-108-0 ; [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=136775
- 3. Сборник задач и вопросов по курсу «Физические основы измерений и эталоны» : сборник задач / сост. А. Ф. Дресвянников, И. Д. Сорокина. Казань : Издательство КНИТУ, 2014. 179 с. : табл. Библиогр. в кн. ; [Электронный ресурс]. Режим доступа:

http://biblioclub.ru/index.php?page=book&id=428138

2) Программное обеспечение

Kaspersky Endpoint Security 10 для Windows Adobe Acrobat Reader Google Chrome OpenOffice Notepad++ Origin 8.1 Sr2 Многофункциональный редактор ONLYOFFICE VLC media player

- 3) Современные профессиональные базы данных и информационные справочные системы
- 1.96C«ZNANIUM.COM» www.znanium.com;
- 2.ЭБС «Университетская библиотека онлайн»https://biblioclub.ru/;
- 3.ЭБС «Лань» http://e.lanbook.com
- 4) Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

VI. Методические материалы для обучающихся по освоению дисциплины

7.1. Примеры возможных практических задач.

- 1. Определение параметров температурной стабильности феоомагнитных объектов (решение задач).
- 2. Исследование магнитной проницаемости ферромагнетиков в постоянных магнитных полях.
- 3. Сравнительный анализ статической и динамической основных кривых намагничивания магнитомягких ферромагнетиков.
- 4. Исследование изменения вида петли гистерезиса при комплексном перемагничивании магнитомягкого ферромагнетика.
- **5.** Определение линейных размеров, площади поперечного сечения и объема тел правильной формы.
- 6. Определение массы образцов магнитных материалов для измерения магнитных свойств в разомкнутой магнитной цепи.
- 7. Определение плотности постоянных магнитов методом гидростатического взвешивания.
- 8. Определение площади петли гистерезиса магнитотвердых ферромагнетиков.
- 9. Градуировка (поверка) магнитоэлектрического веберметра (флюксметра).
- 10. Прогнозирование механизмов намагничивания и перемагничивания ферромагнитных объектов по полевым зависимостям проницаемостей возрастания и убывания.

11. Изучение влияния длины исследуемого полосового ферромагнитного образца на ход зависимости собственного поля размагничивания от намагниченности исследуемого объекта.

7.2. Примеры заданий для текущего контроля успеваемости

Тестовые задания по дисциплине «Специальные методы исследования магнетиков»

1. Основы метрологии

- 1.1. Учение об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности называется...
 - 1. Государственной системой обеспечения единства измерений (ГСИ);
 - 2. квалиметрией;
 - 3. стандартизацией;
 - 4. метрологией.
- 1.2. По способу нахождения значения измеряемой величины измерения разделяют...
 - 1. однократные и многократные;
 - 2. статические и динамические;
 - 3. абсолютные и относительные;
 - 4. прямые, косвенные, совокупные, совместные.

2. Погрешности измерений

- 2.1. Приведенной погрешностью средств измерений (СИ) является:
 - 1. отношение предела допускаемой погрешности СИ к значению измеряемой величины в %;
 - **2.** отношение предельной погрешности СИ к нормирующему значению в %;
 - 3. отношение погрешности средства поверки к погрешности данного СИ;
 - 4. абсолютное значение предела допускаемой погрешности.

- 2.2. По способу выражения погрешности средств измерений могут быть...
 - 1. случайные;
 - 2. систематические;
 - 3. абсолютные;
 - 4. грубые.

3. Средства измерений и обработка результатов измерений

- 3.1. По назначению средства измерений подразделяют на...
 - 1. эталон;
 - 2. измерительный прибор;
 - 3. рабочее;
 - 4. образцовое.
- 3.2. Технические характеристики, описывающие свойства средств измерений и оказывающие влияние на результаты и на погрешности измерений, называется...
 - 1. метрологическими характеристиками;
 - 2. метрологическими нормами;
 - 3. динамическими характеристиками;
 - 4. нормативно-техническими требованиями.

7.3. Примеры построения алгоритмов выполнения разрабатываемых практических задач

<u>Задача №2</u>. Исследование магнитной проницаемости ферромагнетиков в постоянных магнитных полях.

Цель работы: определение полной проницаемости μ_n (максимальной $\mu_{\text{макс.}}$ и начальной $\mu_{\text{нач}}$) (1) и проницаемости возрастания μ_{Δ} и проницаемости убывания μ_{δ} (2) магнитомягкого ферромагнитного материала.

Используемые приборы и оборудование: все приборы и вспомогательное оборудование (переключатели, соединительные провода и т.п.) лаборатории магнитных измерений А-40, все описания лабораторных работ по курсам «Магнитные измерения» и «Процессы перемагничивания магнетиков».

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Задание 1.

- 1. Построить алгоритм выполнения поставленной задачи для чего:
- 1.1. Определить методику измерения основной статической кривой намагничивания.
- 1.2. Выбрать приборы и комплектующие для измерения изменения магнитного потока и для получения выбранных значений задаваемого магнитного поля.
- 1.3. Собрать экспериментальную схему для выполнения поставленной задачи.
- 1.4. Выбрать шаг изменения намагничивающего поля и измерить точки для построения основной статической кривой намагничивания.
- 1.5. Используя описания имеющихся лабораторных работ рассчитать значения B, H, μ_n и построить основную кривую намагничивания B(H) и зависимость $\mu_n(H)$. Определить значения $\mu_{\text{нач}}$ и $\mu_{\text{макс}}$.

Задание 2.

- 2. Построить алгоритм выполнения поставленной задачи для чего:
- 2.1. Определить методику изменения магнитного поля на величину $\pm \Delta H$ и измерения величины $\pm \Delta B$.
- 2.2. Выбрать приборы и комплектующие для измерения изменения магнитного потока $\pm \Delta B$ в выбранных точках кривой намагничивания. Иметь в виду 5 областей кривой намагничивания (начального или обратимого намагничивания, область Рэлея, область наибольших проницаемостей, приближения к насыщению, области парапроцесса).
- 2.3. Дополнить экспериментальную схему для измерения статической кривой намагничивания цепью для измерения значений $\pm \Delta B$.
- 2.4. Определить значения тока для получения изменения намагничивающего тока ± 3 , ± 6 и ± 9 Э.

- 2.5. Измерить значения $\pm \Delta B_i$ при выбранных значениях $\pm \Delta H_i$ и построить зависимости $\mu_{\Delta}(H)$ и $\mu_{\delta}(H)$.
- 2.6. Проанализировать соотношение между величинами μ_{Δ} и μ_{δ} на пяти участках кривой намагничивания.

Задача №3. Сравнительный анализ статической и динамической основных кривых намагничивания магнитомягких ферромагнетиков.

<u>Цель работы:</u> выбор методов измерения статической и динамической кривых намагничивания магнитомягкого ферромагнетика (пермаллоя) позволяющих провести сравнительный анализ экспериментально полученных кривых намагничивания.

Используемые приборы и оборудование: все приборы и вспомогательное оборудование (переключатели, соединительные провода и т.п.) лаборатории магнитных измерений А-40, все описания лабораторных работ по курсам «Магнитные измерения» и «Процессы перемагничивания магнетиков».

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Проанализировать методики измерения статической и динамической кривых намагничивания. Выбрать такие, где способ получения измерительной информации (измерительного сигнала, величина которого участвует в расчете исследуемых магнитных величин) сходен, т.е. в его выработке участвуют одни и те же процессы происходящие внутри исследуемого образца.
- 2. Определить форму и геометрические размеры исследуемого образца исходя из требований выбранных методик измерения основных кривых намагничивания. Иметь в виду, что для обеспечения возможности сравнения полученных результатов и исключения побочных влияний эффектов, сопровождающих процесс магнитных измерений (вид магнитной цепи, собственное поле размагничивания и его зависимость от намагниченности исследуемого образца и т.п.) удобнее всего использовать один и тот же образец.

3. Изготовить образец с учетом необходимости использования его при выполнении первой и второй задачи (для уменьшения ошибки определения величины индукции максимально приблизить площадь витка измерительной катушки к площади поперечного сечения исследуемого образца).

Задача 1.

Измерение основной динамической кривой намагничивания

- 1.1. Выбрать приборы и комплектующие для измерения основной динамической кривой намагничивания и собрать схему для измерения координат вершин частных петель гистерезиса.
- 1.2. Определить шаг изменения намагничивающего тока, для чего:

подать максимальное напряжение с генератора на измерительную обмотку и определить $I_{max}\left(U_{Imax}\right)$;

учитывая нелинейность вида зависимости B(H), выбрать для измерения не менее 20 точек, причем половина точек должна быть сосредоточена на участке основного намагничивания (до 0,7-0,8 B_S), вторая половина точек на участке приближения к насыщению.

- 1.3. Собрать экспериментальную схему для выполнения поставленной задачи.
- 1.4. Получить и представить в табличной форме измерительную информацию для расчета координат вершин частных петель гистерезиса.
- 1.5. Используя расчетные формулы получить значения величин индукции и намагничивающего поля.
- 1.6. Результат представить в графической форме.

<u>Задача 2.</u>

Измерение статической основной кривой намагничивания

2.1. Выбрать приборы и комплектующие для измерения основной статической кривой намагничивания и собрать схему для измерения координат вершин частных петель гистерезиса.

2.2. Определить шаг изменения намагничивающего тока, для чего:

- определить диапазон изменения тока в выбранном намагничивающем устройстве для получения изменения магнитного поля, аналогичного выбранному в задаче первой;
- учитывая нелинейность вида зависимости *B(H)*, выбрать для измерения не менее 20 точек, причем половина точек должна быть сосредоточена на участке основного намагничивания (в диапазоне магнитных полей предыдущего задания), вторая половина точек на участке приближения к насыщению (в диапазоне полей первой задачи);
- провести измерение изменения магнитного потока для определения координат вершин частных петель гистерезиса при выбранных значениях намагничивающего поля, иметь в виду, что перед измерением изменения магнитного потока в каждой точке необходимо проводить «магнитную подготовку» для приведения исследуемого образца при каждом значении выбранного поля в равновесное состояние;
- используя соотношения, связывающие значения индукции и изменения магнитного потока и магнитного поля и величины намагничивающего поля рассчитать магнитные величины, необходимые для построения основной статической кривой намагничивания;
- представить экспериментальные результаты в табличной и графической форме.

7.4. Примеры заданий для промежуточной аттестации успеваемости

7.4.1. Типовые задания для оценивания результатов сформированности компетенции ПК-2 (способностью свободно владеть разделами физики, необходимыми для решения научно-инновационных задач, и применять результаты научных исследований в инновационной деятельности).

Категория знать:

- Какие измерительные приборы используются для измерения изменения магнитного потока?
- Описать алгоритм получения измерительной информации для определения величины максимального энергетического произведения магнитотвердого материала с помощью объекта исследования кубической формы.

Категория уметь:

- Объяснить возможные причины магнитного старения постоянного магнита, используемого в магнитной системе с рабочей точкой в районе максимального энергетического произведения (BH)_{max}.
- Сформировать схему для измерения проницаемости возрастания и убывания объекта исследования из магнитомягкого ферромагнитного материала.

7.5. Методические указания для решения практических вопросов

Перечень методических разработок, доступных в научной библиотеке ТвГУ – http://library.tversu.ru поименован в списке основной 3, 4, 5 и дополнительной 1 – 6 литературы.

Обозначения и термины

Термоциклирование — циклическое изменение температуры от начальной до конечной и снова до начальной;

 $\Delta T = T_2 - T_1$ – температурный интервал или интервал термоциклирования;

 T_I — начальная температура интервала термоциклирования;

 T_2 – конечная температура интервала термоциклирования;

M — магнитный параметр (B — индукция, I — намагниченность, σ - удельная намагниченность);

 M_{I} – исходное значение магнитного параметра;

 M_2 — значение магнитного параметра при максимальной температуре интервала термоциклирования;

 M_{2}^{t} значение магнитного параметра при начальной температуре интервала термоциклирования после термостабилизации при температуре T_{2} ;

$$\beta = \pm \frac{M_{\,2} \, - M_{\,1}}{M_{\,1}} \, 100\% \,$$
 - коэффициент необратимых изменений магнитного

параметра для заданного интервала температур;

$$lpha = \pm rac{M_2 - M_2^t}{M_1 (T_2 - T_1)} 100\% \cdot ^\circ C^{-1}$$
 - коэффициент обратимых изменений магнитного

параметра для заданного интервала температур.

Примеры решения задач

1. Определить коэффициент обратимых изменений индукции α_{100} если $B_0 = 11$ кГс, $B_{100} = 9.8$ кГс, а коэффициент необратимых изменений индукции $\beta_{100} = -10\%$.

<u>Решение:</u> Для вычисления α_{100} необходимо сначала найти значение B^{t}_{100} . По определению

$$\alpha_{100} = \frac{B_{100}^t - B_0}{B_0 \cdot \Delta T} 100\% \cdot C^{-1}, \text{ a } \beta = \frac{B_{100}^t - B_0}{B_0} 100\%.$$

Отсюда

$$B_{100}^{t} = B_{0} + \frac{\beta \cdot B_{0}}{100\%} = 11\kappa\Gamma c + \frac{-10\% \cdot 11\kappa\Gamma c}{100\%} =$$

$$11\kappa\Gamma c - 1,1\kappa\Gamma c = 9,9 \kappa\Gamma c$$

Далее определяем значение α_{100}

$$\alpha_{100} = \frac{(9.8 - 9.9) \kappa \Gamma c}{9.9 \kappa \Gamma c \cdot 100 °C} 100\% = \frac{-0.1}{9.9 \cdot 100} 100\% °C^{-1} = -0.01\% °C^{-1}$$

2. Определить коэффициент необратимых изменений индукции β_{150} постоянного магнита с $B_0 = 10,5$ кГс если после термостабилизации при 150°C его индукция уменьшилась до $B_{150}^t = 9,2$ кГс.

$$\beta_{150} = \pm \frac{B_{150}^t - B_0}{B_0} 100\%$$

или

$$\beta_{150} = \frac{9.2\kappa\Gamma c - 10.5\kappa\Gamma c}{10.5\kappa\Gamma c} 100\% = \frac{-1.3}{10.5} 100\% = -12.4\%.$$

3. Определить величину намагниченности постоянного магнита в исходном состоянии I_0 если $I_{150} = 9,5$ кГс, $\alpha_{150} = +0,012$ %·°C⁻¹, $\beta_{150} = -10$ %.

Решение: Из выражения для α_{150}

$$\alpha_{150} = \frac{I_{150} - I_{150}^t}{I_{150}^t \cdot \Delta T} 100\%^{\circ} \cdot C^{-1}$$

найдем значение I_{150}^{t} как

$$\frac{\alpha I_{150}^t \Delta T}{100} = I_{150} - I_{150}^t, \text{ или } \frac{\alpha I_{150}^t \Delta T}{100} + I_{150}^t = I_{150}$$

$$I_{150}^{t} \left(\frac{\alpha \Delta T + 100}{100} \right) = I_{150}$$

откуда

$$I_{150}^{t} = \frac{100I_{150}}{\alpha \Delta T + 100} = \frac{100 \cdot 9.5}{0.012 \cdot 100 + 100} = \frac{950}{101.2} =$$

$$= 9.387 \approx 9.4 \text{ KFc}.$$

Из соотношения $\beta_{150} = \frac{I_{150}^{\,t} - I_0}{I_0}$ 100% находим I_0 как

$$\frac{\beta_{150}I_0}{100}=I_{150}^t-I_0\text{, или }\frac{\beta_{150}I_0}{100}+I_0=I_{150}^t$$

$$I_0\bigg(\frac{\beta_{150}+100}{100}\bigg)=I_{150}^t$$

откуда

$$I_0 = \frac{100I_{150}^t}{\beta_{150} + 100} = \frac{100 \cdot 9,4}{100 - 10} = \frac{940}{90} =$$
$$= 10,444 \approx 10,4 \text{ kGc}.$$

4. Определить величину намагниченности постоянного магнита при 100°С I_{100} если $I_0 = 12$ кГс, $\alpha_{200} = +0{,}012$ %·°С⁻¹, $\alpha_{100\text{--}200} = -0{,}02$ %·°С⁻¹, а $\beta_{200} = -10$ %.

 $\underline{Peшeнue:}$ Из выражения для $oldsymbol{eta_{200}}$ найдем величину I^{t}_{200} как

$$\begin{split} \frac{\beta_{200}I_0}{100} &= I_{200}^t - I_0, \text{ или } \frac{\beta_{200}I_0}{100} + I_0 = I_{200}^t \\ I_{200}^t &= I_0 \bigg(\frac{\beta_{200} + 100}{100}\bigg) = 12 \bigg(\frac{-10 + 100}{100}\bigg) = \\ &= 12 \bigg(\frac{90}{100}\bigg) = 12 \cdot 0.9 = 10.8 \text{ к}\Gamma\text{c}. \end{split}$$

Из выражения для α_{200} найдем значение I^t_{200} как

$$\frac{\alpha_{200}~I_{200}^{\,t}\,\Delta T}{100} = I_{200} - I_{200}^{\,t}, \text{ или } \frac{\alpha_{200}~I_{200}^{\,t}\,\Delta T}{100} + I_{200}^{\,t} = I_{200}$$

$$I_{200} = I_{200}^{t} \left(\frac{\alpha_{200} \Delta T + 100}{100} \right)$$

откуда

$$I_{200}$$
=10,8 $\left(\frac{+0,012 \cdot 200 + 100}{100}\right)$ =10,8 $\left(\frac{102,4}{100}\right)$ =
= 11,06 ≈ 11,1 κΓc.

Из выражения $\alpha_{100-200}=\pm \frac{I_{200}-I_{100}}{I_{100}\Delta T}$ 100% · $^{\circ}$ C^{-1} найдем значение I_{100} как

$$\frac{\alpha_{100-200}\,I_{100}\Delta T}{100}=I_{200}-I_{100}$$
 , или $\frac{\alpha_{100-200}\,I_{100}\Delta T}{100}+I_{100}=I_{200}$

$$I_{100} \left(\frac{\alpha_{100-200} \Delta T + 100}{100} \right) = I_{200}$$

откуда

$$I_{100} = \frac{100 \cdot I_{200}}{\alpha_{100-200} \Delta T + 100} = \frac{100 \cdot 11,1}{-0,02 \cdot 200 + 100} = \frac{1110}{96} =$$
$$= 11,562 \approx 11,6 \text{ kGc}.$$

Вопросы для самоподготовки

- 1. Магнитное старение (дать определение и описать процессы, происходящие в ферромагнетиках). Обратимые и необратимые изменения магнитных свойств постоянных магнитов (привести пример).
- 2. Старение постоянных магнитов. Для каких процессов, происходящих в ферромагнитных материалах, применяется это понятие (дать определение и привести примеры).

- 3. В чем сходство и различие процессов структурного и магнитного старения постоянных магнитов (привести примеры и сравнительный анализ рассматриваемых процессов, указать способы восстановления уровня магнитных свойств до первоначального значения)?
- 4. Структурная и магнитная стабильность магнитных свойств, сходство и различие.
- 5. Магнитная стабильность, причины необратимых изменений магнитных свойств. Определение.
- 6. Гистерезис. Термомагнитный гистерезис. Определение. Примеры. Параметры (математическое выражение, единицы измерения).
- 7. Параметры температурной стабильности магнитных свойств. Предельный (климатический) интервал температур. Определения.
- 8. Необратимые изменения магнитных свойств. Магнитное старение. Коэффициент необратимых изменений магнитных свойств. Определение. Форма выражения. Единицы измерения.
- 9. Температурный коэффициент необратимых изменений магнитных свойств (дать определение, единицы измерения, знак), магнитное старение (дать определение и описать процессы, происходящие в ферромагнетиках).
- 10. Какие процессы характеризуют коэффициенты обратимых и необратимых изменений магнитных свойств постоянных магнитов. Что определяет их величину и знак?

Примеры вопросов и билета итогового экзамена

- 1. Структура построения СМИ с высокотемпературными и низкотемпературными приставками.
- 2. Способы создания, изменения и поддержания температуры при исследовании магнитных свойств в положительном интервале температур (высокотемпературные приставки).
- 3. Способы создания, изменения и поддержания температуры при исследовании магнитных свойств в отрицательном интервале температур (низкотемпературные приставки).

- 4. Понятие старения магнитных свойств магнитотвердых материалов.
- 5. Структурное старение магнитных свойств высококоэрцитивных материалов.
- 6. Магнитное старение магнитных свойств высококоэрцитивных материалов (коэффициент необратимых изменений).
- 7. Понятие температурной стабильности магнитных свойств магнитотвердых материалов (коэффициент обратимых изменений).
- 8. Параметры стабильности магнитных свойств магнитотвердых материалов (температурные коэффициенты).
- 9. Понятие термического магнитного фазового анализа.
- 10. Методы исследования температурных зависимостей магнитных свойств, используемые для измерения температурных зависимостей магнитных свойств (определение температур Кюри ферромагнитных фаз, присутствующих в объекте исследования).
- 11. Методы исследования температурных зависимостей магнитных свойств, используемые для измерения температурных зависимостей магнитных свойств (температурных зависимостей структурно-нечувствительных магнитных свойств, используемых для количественных расчетов).

Билет 1.

- 1. Гистерезис (определение физического явления, виды гистерезиса, примеры).
- 2. Температурный коэффициент необратимых изменений магнитных свойств (определение, физические процессы, влияющие на его величину, единицы измерения, знак).
- 3. Старение постоянных магнитов. Для каких процессов, происходящих в ферромагнитных материалах, применяется это понятие (дать определение и привести примеры).
- 4. Определить коэффициент обратимых изменений индукции α_{100} если $B_0 = 11$ кГс, $B_{100} = 9,8$ кГс, а коэффициент необратимых изменений индукции $\beta_{100} = -10\%$.

5. Определить величину намагниченности постоянного магнита в исходном состоянии I_0 если $I_{150}=9,5$ кГс, $\alpha_{150}=+0,012$ %·°C⁻¹, $\beta_{150}=-10$ %.

VII. Материально-техническое обеспечение

Наименование специальных помещений	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
Учебно-научная лаборатория магнитных и электрических измерений № 40 (170002 Тверская обл., г. Тверь, Садовый пер., д. 35)	1. Лабораторные электронные весы с гирей М-ЕR 122ACF JR-600.01 LCD 2. Вольтметр АКИП-2101 3. Вольтметр АКИП-2101 4. Источник питания с опцией интерфейса USB АКИП-1141 5. Источник питания с опцией интерфейса USB АКИП-1141 6. Компьютер iRU Corp 510 I5-2400/4096/500/G210-512/DVD-RW/W7S 7. Компьютер с монитором 940N Core 6550 Box/Asus P5KSE/2*1024DDRII/160/7200/DVDRW/ 8. Экран настенный ScreenMedia 153*203 9. Мультиметр цифровой высокой точности UT804 10. Установка импульсного намагничивания "Мишень" 11. Мультиметр цифровой высокой точности UT804 (2 шт.) 12. Электромагнит (3 шт.) 13. Электромагнит ЭМ-1 14. Осциллограф С-1-68 15. Ферротестер 16. Блок питания Б5-9 17. Вольтметр В7-27A (2 шт.) 18. Генератор Г3-102 (3 шт.) 19. Источник питания Б-5-8 (2 шт.) 20. Осциллограф С-1-65 21. Генератор Г3-34 (2 шт.) 22. Блок питания Б-5-21 23. Микровеберметр Ф-190 24. Проектор ВепQ МР777 25. Блок питания 26. Вольтметр В-7-23 27. Генератор Г3-109 28. Генератор Г3-109	Kaspersky Endpoint Security 10 для Windows Adobe Acrobat Reader Google Chrome OpenOffice Notepad++ Origin 8.1 Sr2 Многофункциональный редактор ONLYOFFICE VLC media player

29.	Источник питания Б-5-21	

VIII. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел	Описание внесенных	Реквизиты документа,
	рабочей программы	изменений	утвердившего
	дисциплины		изменения
1.			
2.			