Документ подписан промильность в расство науки и высшего образования РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио ректора БОУ ВО «ТВЕРС КОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Дата подписания: 22.07.2024 16:03:28

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Б.Б.Педько

2024 г.

мая

Рабочая программа дисциплины

Физика нано- и гетероструктур

Закреплена за

Прикладной физики

кафедрой:

Направление

03.03.02 Физика

подготовки:

Направленность

Медицинская физика

(профиль):

Квалификация: Бакалавр

Форма обучения: очная

Семестр: 6

Программу составил(и):

канд. физ.-мат. наук, доц., Васильев Сергей Александрович

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели освоения дисциплины (модуля):

Усвоение современных представлений о физических процессах и технологиях, лежащих в основе создания субмикронных структур гетеро- и наноэлектроники, в том числе современных представлений о физических, химических и биологических свойствах различных наноматериалов, а также о возможности использования нанообъектов в перспективных областях промышленности

Задачи:

Получение сведений о классификации наноструктур; ознакомление со способами получения наноструктур и гетероструктур; определение областей техники, в которых наноструктуры набирают популярность; умение ориентироваться в современной научно-технической литературе, связанной с физикой гетеро- и наноструктур.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Цикл (раздел) ОП: Б1.В.ДВ.02Б1.В

Требования к предварительной подготовке обучающегося:

Молекулярная физика

Электричество и магнетизм

Атомная физика

Электродинамика

Квантовая механика

Методы математической физики

Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Квантовая механика

Физика лазеров и лазерные технологии

Методы и средства лучевой диагностики

Взаимодействие излучения с веществом

Физика полупроводников

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость	4 3ET
Часов по учебному плану	144
в том числе:	
аудиторные занятия	56
самостоятельная работа	51
часов на контроль	27

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

- ПК-3.1: Осуществляет анализ данных с применением математических методов и информационных технологий
- ПК-3.2: Использует систематизированные теоретические и практические знания для определения и решения профессиональных задач в области медицинской физики

5. ВИДЫ КОНТРОЛЯ

Виды контроля	в семестрах	(:
экзамены		6

курсовые работы	6
-----------------	---

6. ЯЗЫК ПРЕПОДАВАНИЯ

Язык преподавания: русский.

7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код занят.	Наименование разделов и тем	Вид занятия	Семестр / Курс	Часов	Источ- ники	Примечан- ие
	Раздел 1. Классификация нанообъектов					
1.1	Наноструктуированные материалы и наночастицы. Классификация В. Оствальда по агрегатному состоянию фаз. Классификация по размерам. Классификация по мерности. Классификация Г. Глейтера основных типов структур неполимерных наноматериа-лов по химическому составу, распределению фаз и форме. Наноматериалы: функциональные, интеллектуальные, нанообъекты, содержащие специфические группы атомов, молекул нанометровых размеров (до 100 нм). Функциональные нанома-териалы: низкоразмерные объекты; тонкие слои, пленки; нанопроволоки, полимерные наноматериалы. Интеллек-туальные наноматериалы: объемные,	Лек	6	2	Л1.2 Л1.1Л2.2 Л2.1	

J 11. 0J.0J.	ог Физика імедицинская физика 2024.ріх				CIp. 4
1.2	Наноструктуированные материалы и наночастицы. Классификация В. Оствальда по агрегатному состоянию фаз. Классификация по размерам. Классификация по мерности. Классификация Г. Глейтера основных типов структур неполимерных наноматериа-лов по химическому составу, распределению фаз и форме. Наноматериалы: функциональные, интеллектуальные, нанообъекты, содержащие специфические группы атомов, молекул нанометровых размеров (до 100 нм). Функциональные нанома-териалы: низкоразмерные объекты;	6	2	Л1.2 Л1.1Л2.2 Л2.1	Cip. 1
	тонкие слои, пленки; нанопроволоки, полимерные наноматериалы. Интеллек-туальные наноматериалы: объемные, полимерные и биоматериалы.				
	Раздел 2. Относительная роль физических и химических связей и взаимодействий применительно к нанообъектам				
2.1	Относительная роль гравитационных, электростатических, электродинамических и магнитных взаимодействий на наноуровне. Природа сил притяжения и отталкивания. Когезионная энергия твердых тел. Природа межмо-лекулярных взаимодействий Ориентационное, индукционное и дисперсионные взаимодействия. Природа водородной связи и ее особенности	6	2	Л1.2 Л1.1Л2.2 Л2.1	

					1	
2.2	Относительная роль	Пр	6	2	Л1.2	
	гравитационных,				Л1.1Л2.2	
	электростатических,				Л2.1	
	электродинамических и				312.1	
	1					
	магнитных взаимодействий на					
	наноуровне. Природа сил					
	притяжения и отталкивания.					
	Когезионная энергия твердых					
	тел. Природа					
	межмо-лекулярных					
	взаимодействий					
	Ориентационное,					
	· ·					
	индукционное и					
	дисперсионные					
	взаимодействия. Природа					
	водородной связи и ее					
	особенности					
	Раздел 3. Особые физические и					
	химические свойства					
	· ·					
	наноструктурированных					
	материалов. Зависимость					
	свойств от размера частиц					
3.1	Особые свойства нанообъектов,	Лек	6	4	Л1.2	
	обусловленные				Л1.1Л2.2	
	соизмеримостью их размеров и				Л2.1	
	характерной длиной					
	физических свойств Особые					
	свойства нанообъектов,					
	· · · · · · · · · · · · · · · · · · ·					
	обусловленные огромной					
	поверхностной энергии: доля					
	поверхности в наноматериалах,					
	величина поверхностной					
	энергии в наноматериалах.					
	Поверхности и геометрические					
	размеры кристаллов.					
	Поверхность и геометрические					
	размеры нанообъектов.					
2.2	-	Пе	6	1	Л1.2	
3.2	Особые свойства нанообъектов,	11b	6	4		
	обусловленные				Л1.1Л2.2	
	соизмеримостью их размеров и				Л2.1	
	характерной длиной					
	физических свойств Особые					
	свойства нанообъектов,					
	обусловленные огромной					
	поверхностной энергии: доля					
	поверхности в наноматериалах,					
	1					
	величина поверхностной					
	энергии в наноматериалах.					
	Поверхности и геометрические					
	размеры кристаллов.					
	Поверхность и геометрические					
	размеры нанообъектов.					
1	<u> </u>	1			<u> </u>	

	Раздел 4. Идеальная и реальная кристаллические структуры наноразмерных материалов					
4.1	Структурные и электронные магические числа. Зависимость периода решетки от размеров наноматериала. Дефекты кристаллической решетки наноматериалов. Точечные дефекты в наноматериалах. Линейные дефекты в наноматериалах. Микроискажения кристаллической решетки.	Лек	6	2	Л1.2 Л1.1Л2.2 Л2.1	
4.2	Структурные и электронные магические числа. Зависимость периода решетки от размеров наноматериала. Дефекты кристаллической решетки наноматериалов. Точечные дефекты в наноматериалах. Линейные дефекты в наноматериалах. Микроискажения кристаллической решетки. Раздел 5. Физико-химические	Пр	6	2	Л1.2 Л1.1Л2.2 Л2.1	
	основы формирования наноструктурированных материалов					
5.1	Формирования наноструктур по механизму «снизу — вверх» Термодинамические аспекты гомогенного зародышеобразования. Расчет критического размера и изменения свободной энергии зародышей разной формы. Термодинамические аспекты гетеро-генного зародышеобразования на поверхности кристалла. Кинетика гетерогенного зародышеобразования Формирования наноструктур по механизму «сверху — вниз».		6	4	Л1.2 Л1.1Л2.2 Л2.1	

					1	
5.2	Формирования наноструктур по механизму «снизу – вверх»	Hp	6	4	Л1.2 Л1.1Л2.2	
	Термодинамические аспекты				Л2.1	
	гомогенного				312.1	
	зародышеобразования. Расчет					
	критического размера и					
	изменения свободной энергии					
	зародышей разной формы. Термодинамические аспекты					
	гетеро-генного					
	_ أ					
	зародышеобразования на поверхности кристалла.					
	Кинетика гетерогенного					
	зародышеобразования					
	Формирования наноструктур по					
	механизму «сверху – вниз».					
	Раздел 6. Физико-химические					
	основы планарной технологии.					
6.1	Основные операции планарной	Лек	6	4	Л1.2	
	технологии. Технологические				Л1.1Л2.2	
	маршруты производства				Л2.1	
	различных типов интегральных					
	схем. «Критические» операции,					
	определяющие минимальные					
	размеры элементов. Переход с					
	нанораз-мерным элементам.					
6.2	Основные операции планарной	Пр	6	4	Л1.2	
	технологии. Технологические				Л1.1Л2.2	
	маршруты производства				Л2.1	
	различных типов интегральных					
	схем. «Критические» операции,					
	определяющие минимальные					
	размеры элементов. Переход с					
	нанораз-мерным элементам.					
	Раздел 7. Авто-и					
	гетероэпитаксия		_			
7.1	Механизмы эпитаксиального	Лек	6	4	Л1.2	
	роста тонких пленок.				Л1.1Л2.2	
	Автоэпитаксия кремния.				Л2.1	
	Эпитаксия из газовой фазы.					
	Молекулярнолучевая					
	эпитаксия. Формирование					
	наноразмерных структур.					
	Гетероэпитаксия. Получения					
	структур					
	«кремний-на-диэлектрике».					

7.2	Механизмы эпитаксиального роста тонких пленок. Автоэпитаксия кремния. Эпитаксия из газовой фазы. Молекулярнолучевая эпитаксия. Формирование наноразмерных структур. Гетероэпитаксия. Получения структур «кремний-на-диэлектрике». Раздел 8. Процессы металлизации интегральных	6	4	Л1.2 Л1.1Л2.2 Л2.1	
	схем.				
8.1	Процессы формирования межсоединений и их вклад в быстродействие интегральных схем. Требования к материалам для межсоединений. Физические и химические методы получения тонких пленок. Удельное сопротивление, контактное сопротивление различных материалов, применяемых в кремниевой технологии. Химическая и физическая адгезия. Эффект электромиграции. Стойкость к электромиграции. Стойкость к электромиграции. Недостатки алюминиевой металлизации. Силициды тугоплавких металлов. Системы металлизации на основе меди. Многоуровневая металлизация	6	2	Л1.2 Л1.1Л2.2 Л2.1	
8.2	Процессы формирования межсоединений и их вклад в быстродействие интегральных схем. Требования к материалам для межсоединений. Физические и химические методы получения тонких пленок. Удельное сопротивление, контактное сопротивление различных материалов, применяемых в кремниевой технологии. Химическая и физическая адгезия. Эффект электромиграции. Стойкость к электромиграции. Стойкость к электромиграции. Недостатки алюминиевой металлизации. Силициды тугоплавких металлов. Системы металлизации на основе меди. Многоуровневая металлизация	6	2	Л1.2 Л1.1Л2.2 Л2.1	

	T	ı	ı	1		
	Раздел 9. Сканирующая атомно-силовая микроскопия					
9.1	Силовое взаимодействие между зондом и поверхностью. Датчик силового взаимодействия — кантеливер. Задача Герца. Силы Ван-Дер-Ваальса. Энергия ориен-тационного взаимодействия. Эне-ргия индукционного взаимодействия. Энергия дисперсионного взаимодей-ствия. Влияние консервативных сил на решение задачи Герца. Методы атомно-силовой микроскопии. Формирование изображения в атомно-силовой микроскопии.	Лек	6	2	Л1.2 Л1.1Л2.2 Л2.1	
9.2	Силовое взаимодействие между зондом и поверхностью. Датчик силового взаимодействия — кантеливер. Задача Герца. Силы Ван-Дер-Ваальса. Энергия ориен-тационного взаимодействия. Эне-ргия индукционного взаимодействия. Энергия дисперсионного взаимодей-ствия. Влияние консервативных сил на решение задачи Герца. Методы атомно-силовой микроскопии. Формирование изображения в атомно-силовой микроскопии.	Пр	6	2	Л1.2 Л1.1Л2.2 Л2.1	
	Раздел 10. Сканирующая туннельная микроскопия					
10.1	Туннельный эффект. Распределение электронов в приграничной области твердого тела. Потенциальный барьер. Плотность туннельного тока между зондом и образцом. Разрешающая способность туннельного микроскопа. Режимы работы сканирующего туннельного микроскопа	Лек	6	2	Л1.2 Л1.1Л2.2 Л2.1	

10.2	Туннельный эффект. Распределение электронов в приграничной области твердого тела. Потенциальный барьер. Плотность туннельного тока между зондом и образцом. Разрешающая способность туннельного микроскопа. Режимы работы сканирующего туннельного микроскопа Раздел 11. Самостоятельная	-	6	2	Л1.2 Л1.1Л2.2 Л2.1	
11.1	работа Самостоятельная работа	Ср	6	51	Л1.2 Л1.1Л2.2 Л2.1	
	Раздел 12. Экзамен					
12.1	Экзамен	Экзамен	6	27	Л1.2 Л1.1Л2.2 Л2.1	

Список образовательных технологий

1	Активное слушание
2	Информационные (цифровые) технологии
3	Проектная технология
4	Дискуссионные технологии (форум, симпозиум, дебаты, аквариумная дискуссия, панельная дискуссия, круглый стол, фасилитированная и т.д.)

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные материалы для проведения текущей аттестации

См. Приложение 1

8.2. Оценочные материалы для проведения промежуточной аттестации

См. Приложение 1

8.3. Требования к рейтинг-контролю

Оценка знаний студентов осуществляется по результатам успеваемости и оценивается по 100 – бальной системе. Семестр делится на два модуля.

Согласно нормативно — методическим материалам рейтинговой системы оценки качества учебной работы студентов ТвГУ, студент по предмету для сдачи экзамена должен набрать за семестр не менее 40 балов.

1 контрольная точка. По текущей работе студента – 21 балл. Итоговый контроль за модуль – 9 баллов. Всего 30 баллов.

2 контрольная точка. По текущей работе студента — 11 баллов. Итоговый контроль за модуль — 9 баллов. Выступление с докладом — 10 балов. Всего 60 баллов.

Баллы по текущей работе студента начисляются за следующие виды работ:

- выступление с докладом 10 балов;
- модульная контрольная работа максимум 9 балов.

Итоговый контроль проводится в форме экзамена, который включает устные ответы

на теоретические вопросы. В билете 2 вопроса, каждый из них оценивается до 20 баллов.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

9.1. Рекомендуемая литература

9.1.1. Основная литература

Шифр	Литература
Л1.1	Смирнов, Нано- и гетероструктуры в электронике, Тверь: Тверской государственный
	университет, 2008, ISBN:,
	URL: http://texts.lib.tversu.ru/texts/02054ogl.pdf
Л1.2	Колосько А. Г., Поздняков А. В., Разинова А. А., Макаров Л. М., Биологические
	системы (краткий экскурс). Наноструктуры, Санкт-Петербург: СПбГПМУ, 2020,
	ISBN: 978-5-907321-74-8,
	URL: https://e.lanbook.com/book/174530

9.1.2. Дополнительная литература

Шифр	Литература
Л2.1	Итальянцев, Шульга, Мамкина, Каплунова, Магниточувствительные твердотельные
	гетероструктуры на основе пьезокерамических и магнитострикционных элементов,
	Тверь: Тверской государственный университет, 2011, ISBN:,
	URL: http://eprints.tversu.ru/4662/
Л2.2	Учреждение Рос. акад. наук, Ин-т СВЧ полупроводниковой электроники РАН
	(ИСВЧПЭ РАН), Наногетероструктуры в сверхвысокочастотной полупроводниковой
	электронике, Москва: Техносфера, 2010, ISBN: 978-5-94836-255-7,
	URL: http://texts.lib.tversu.ru/texts/973017ogl.pdf

9.3.1 Перечень программного обеспечения

1	Adobe Acrobat Reader
2	Google Chrome
3	WinDjView

9.3.2 Современные профессиональные базы данных и информационные справочные системы

1	Научная электронная библиотека eLIBRARY.RU (подписка на журналы)
2	ЭБС ТвГУ
3	ЭБС «Лань»
4	ЭБС «Университетская библиотека онлайн»
5	ЭБС «ЮРАИТ»
6	ЭБС «ZNANIUM.COM»

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Аудит-я	Оборудование
3-218	комплект учебной мебели, переносной ноутбук, проектор, экран
3-226	комплект учебной мебели, Микшерный пульт, Аудиокомплект, Интерактивная система, проектор, Телекоммуникационные шкафы, экран, компьютер

3-227	комплект учебной мебели, переносной ноутбук, проектор, экран
3-228	комплект учебной мебели, переносной ноутбук, проектор, экран
3-28	комплект учебной мебели, переносной ноутбук, проектор, экран настенный

11. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Предметом оценки является подготовка студентов к занятиям, работа студентов на практических занятиях.

Оценки успеваемости студентов проходит в модульную неделю в соответствии с графиков учебного процесса.

Практические задания по демонстрации компетенций заключаются в устных или письменных ответах на поставленные преподавателем или составленным самими студентами вопросы (традиционные или в форме тестов). При этом оценивается обоснованность ответа, ясность и последовательность изложения мысли. Такая демонстрация компетенций проверяет уровень владения теоретическим и практическим материалом.

ПРИЛОЖЕНИЕ

Задание:

- 1. Сделать доклад на тему "Особые свойства нанообъектов".
- 2. Сделать доклад на тему "Физические и химические методы получения тонких пленок".

Задание:

Выполнить тест:

- 1. Почему зародыш, отвечающий максимуму работы нуклеации W называют критическим?
- Потому что он отвечает критической температуре
- Потому что только при размере зародыша больше критического возможен его самопроизвольный рост
- Термин «критический зародыш» в теории фазовых переходов не используется
- Потому что при превышении критического размера зародыш исчезает
- Потому что только критический зародыш является стабильным
- 2. Выберете правильное утверждение
- Температура плавления наночастиц возрастает с уменьшением их размера
- Температура плавления наночастиц не зависит от их размера
- Температура плавления наночастиц уменьшается с уменьшением их размера
- Понятие температуры плавления к наночастицам неприменимо
- Температура плавления изменяется по гармоническому закону

Вопросы к экзамену

Основные тенденции развития микро-и нанотехнологий создания устройств электронной техники.

- Закон Мура. Основные причины замедления темпов роста степени интеграции.
 - Квантовые ограничения для приборов классической электроники.
 - Физические ограничения минимальных размеров ИС.

- Схемотехнические и технологические ограничения минимальных размеров ИС.
- -Базовые операции и основные принципы планарной технологии. Изменения набора базовых операций при переходе к наноразмерным приборам.
- Бездислокационный кремний. Геттерирование примесей. Внутреннее и внешнее геттерирование.
 - Термическое окисление. Основные методы. Получение сверхтонких слоев.
- Анизотропия ионного легирования. Температурные режимы. Применения ионного легирования в технологии субмикронных СБИС.
 - Автоэпитаксия кремния. Методы автоэпитаксии.
- Молекулярно-лучевая эпитаксия в технологии наноразмерных структур электроники.
 - Основные требования к подложкам в процессах гетероэпитаксии.
 - Эпитаксия соединений АЗБ5. Мос-гидридная эпитаксия.
 - Предельная разрешающая способность различных методов литографии.
 - Оптическая литография в дальнем УФ-диапазоне.
 - Рентгенолитография.
 - Электронно-лучевая литография. Эффект близости.
 - Электронно-проекционная литография.
 - Ионная литография.
- Основные требования к материалам для межсоединений. Многоуровневые системы металлизации.
- Сравнительная характеристика алюминиевой и медной систем металлизации.
- Виды классификации нанообъектов. Определение дисперсности. Характеристики дисперсности наноматериалов. Классификация по мерности.
- Наноструктрные материалы. Функциональные и интеллектуальные наноматериалы. Приведите примеры их использования.
- Особые физические, химические и биологические свойства нанообъектов и наноструктуированных систем. Размерные эффекты.
- Относительная роль гравитационных, электростатических, электродинамических и магнитных взаимодействий на наноуровне. Природа сил притяжения и отталкивания.

- Поверхности и геометрические размеры кристаллов и других нанообъектов
- Идеальная кристаллические структуры наноразмерных материалов. Структурные и электронные магические числа. Зависимость периода решетки от размеров наноматериала.
- Реальная кристаллическая структура наноструктурированных материалов. Дефекты кристаллической решетки, характерные для наноматериалов. Возможность существования вакансий и дислокаций в наноматериалах.
 - Микроискажения кристаллической решетки в наноматериалах.
- Поверхность, границы, морфология наноматериалов. Доля поверхности в наноматериалах.
 - Величина поверхностной энергии. Поверхностный потенциал Гиббса.
 - Границы зерен в наноструктурных материалах. Морфология наночастиц.
- Механизмы формирования наноструктур, их принципиальное различие. Гомогенное зародышеобразования наночастиц. Энергия Гиббса конкретных процессов получения наноматериалов и для зародышей разной формы.
- Гетерогенного зародышеобразования наночастиц на поверхности кристалла и в реакциях восстановления.
 - Особенности формирования наноструктуры по механизму «сверху-вниз»
- Квазиравновесие в наносистемах; устойчивость нанообъектов. Изменение фазовых равновесий в наноразмерных системах. Уравнение Лапласа.
- Фазовое равновесие в наносистемах. Изменение температуры плавления в наноматериалах. Уравнение Томсона. Модели, описывающие понижение температуры плавления наносистем.
- Особенности полиморфных превращений в наносистемах. Устойчивость нанообъектов. Образование твердых растворов.
- Квантоворазмерные эффекты в металлах, полупроводниках и молекулярных кристаллах.
- Особенности зонной структуры металлов, полупроводников в нанокристаллическом состоянии.
- Эффекты, обусловленные размерами и размерностью нанообъектов: размерные эффекты. Задача о частице в потенциальном ящике. Частичная локализация. Поведение электронов в тонкой пленке.

- Квантовое ограничение. Квантовая яма. Квантовая проволока. Квантовая точка.
- Размерность объекта и электроны проводимости. Ферми-газ и плотность состояний. Свойства, зависящие от плотности состояний. Условия, при которых наблюдаются квантовые эффекты.
- Оптические свойства полупроводников. Спектры поглощения и люминесценции, их связь с зонной структурой полупроводников. Оценка размеров наночастиц по спектральным данным.
- Методы синтеза разупорядоченных твердотельных структур. Влияния наномасштабности зерен на объемную структуру и свойства разупорядоченных твердотельных материалов
- Линейные дефекты: трещины и дислокации в разупорядоченных композиционных материалах. Определение дислокации и вектора Бюргерса. Особенности и свойства дислокации. Различие величин модулей упругости и пределов прочности: наноструктурированного материала и объемного материала с микронным размером зерна.