#### Документ подписан промины ССТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио реказда БОУ ВО «ТВЕРС КОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Дата подписания: 14.07.2025 15:28:08

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Феофанова М.А.

14 мая 2025г.



Рабочая программа дисциплины

## Кристаллохимия

Закреплена за

Физической химии

кафедрой:

Направление

04.05.01 Фундаментальная и прикладная химия

подготовки:

Направленность

Экспертная и медицинская химия: теория и

(профиль): практика.

Квалификация: Химик. Преподаватель химии

Форма обучения: очная

Семестр: 7

Программу составил(и):

канд. хим. наук, доц., Русакова Н.П.

Тверь, 2025

### 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

## Цели освоения дисциплины (модуля):

Целью освоения дисциплины – сформировать у студента основные представления учения о кристаллах, привить ему навыки определения кристаллических структур.

#### Задачи:

- -обработка структурной информации, получаемой методами PCA и другими дифракционными методами, систематизация структурного материала,
- -выявление и интерпретация закономерностей, присущих строению кристаллических веществ, установление зависимости физических и химических свойств от структуры.

Кристаллохимия – наука о кристаллических структурах. Это важнейший раздел химии, базирующийся главным образом на данных рентгеноструктурного анализа (РСА), а также электронографии и нейтронографии.

Содержание дисциплины «Кристаллохимия»:

- предмет и задачи кристаллохимии;
- кристаллические структуры;
- основы рентгеноструктурного анализа;
- группы симметрии и структурные классы;
- общая кристаллохимия (типы химических связей в кристаллах, систематика кристаллических структур, шаровые упаковки и кладки, кристаллохимические радиусы атомов, изоморфизм и полиморфизм);
- -избранные главы систематической кристаллохимии (простые вещества, бинарные и тернарные соединения, силикаты, органические вещества); обобщенная кристаллохимия.

## 2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Цикл (раздел) ОП: Б1.О

### Требования к предварительной подготовке обучающегося:

Дополнительные главы квантовой химии

Избранные главы физической химии

Квантовая механика и квантовая химия

Координационная химия

Стереохимия

Физико-химические методы исследования структуры органических соединений

Физическая химия

Органическая химия

Аналитическая химия

Физика

Строение вещества

Неорганическая химия

## Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Дополнительные главы квантовой химии

Избранные главы физической химии

Физические методы исследования

### 3. ОБЪЕМ ДИСЦИПЛИНЫ

| Общая трудоемкость      | 3 3ET |
|-------------------------|-------|
| Часов по учебному плану | 108   |
| в том числе:            |       |
| аудиторные занятия      | 51    |
| самостоятельная работа  | 37    |

## 4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-3.1: Применяет теоретические и полуэмпирические модели при решении задач химической направленности

Уровень 1

основные приемы рентгенструктурного анализа, его математические основы и назначение, определение дальнего порядка кристаллов, постулаты квантовой механики, используемые при квантовохимических вычислениях структуры молекулы или кристалла основные кристаллографические системы и построение сингоний на них

элементы и операции симметрии, трансляционные единицы и элементарные ячейки по Браве

построение групп симметрии и их обозначение по Шенфлису и Могену

выделение винтовых осей, плоскостей скольжения и симметрия пустот проекции сферические, стереографические, гномостереограмические, гномические, сетка Вульфа, планарный и полярный комплекс, отражение на проекциях элементов симметрии и т.д.

Уровень 1

выделять в кристаллической ячейке элементы симметрии и саму кристаллографическую ячейку, элементарную ячейку представить геометрию молекулы и кристаллической ячейки для квантово-химических вычислений структуры методами ab-initio, РМ и т.д.

определять кристаллографическую систему по ее базису работать с индексами Миллера для плоскостей кристалла и направлений

выделить элементы симметрии кристалла, составить группу симметрии, обозначить в символике Могена и Шенфлиса записать элементы и группу симметрии на стереографической и гномостереографической проекциях

показать наличие в кристаллографической ячейке винтовой оси, плоскости скользящего отражения и т.д.

Уровень 1

основами геометрии и геометрических построений, методами вычисления углов и сторон треугольников, правилами построения плоскостей трехмерной системы координат в двухмерном пространстве и т.д.

основами оптики и понятиями о типах электромагнитного излучения и их особенностях

основами квантовой механики, используемыми при вычислении структуры молекул и кристаллических структур, основами выбора функционалов и метода для построения квантово-химической модели элементарной ячейки

ОПК-6.3: Представляет результаты работы в виде тезисов доклада на русском и английском языке в соответствии с нормами и правилами, принятыми в химическом сообществе

Уровень 1

основные этапы оформления научной информации в виде тезисов методы работы с основными браузерами и стандартным программным обеспечением, устанавливаемым на персональный компьютер основные правила работы с текстами, построения и согласования предложений используемую терминологию на русском и английском языках

- Уровень 1 оформить тезисы на бумажном и электронном носителе грамотно строить предложения на русском и английском языках
- Уровень 1 обширным словарным запасом и знанием русского и английского языка навыками создания и работы с документами на компьютере, оформления презентаций способностью чтения информации на английском и русском языках

ОПК-6.4: Готовит презентацию по теме работы и представляет ее на русском и английском языках

- Уровень 1 правила оформления и таймплейс представления презентации электронные базы данных, в том числе химической направленности, поисковые интернет-ресурсы
- Уровень 1 выделить цели, задачи, объекты, методы, содержание, выводы презентации отобрать иллюстрационный, графический и текстовый материал для презентации работать с интернет-ресурсами и электронными базами данных
- Уровень 1 навыками работы с графическими, текстовыми редакторами и редакторами изображений, пакетом PoverPoint умением осуществлять поисковые запросы на интернет-ресурсах и электронных базах данных грамотной речью и правильным изложением мысли на русском и английском языках

## 5. ВИДЫ КОНТРОЛЯ

| Виды контроля в семестрах | : |
|---------------------------|---|
| зачеты                    | 7 |

## 6. ЯЗЫК ПРЕПОДАВАНИЯ

Язык преподавания: русский.

## 7. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

| Код<br>занят. | Наименование разделов и<br>тем                | Вид<br>занятия | Семестр<br>/ Курс | Часов | Источ-<br>ники                                  | Примечан-<br>ие |
|---------------|-----------------------------------------------|----------------|-------------------|-------|-------------------------------------------------|-----------------|
|               | Раздел 1. Введение                            |                |                   |       |                                                 |                 |
| 1.1           | Введение                                      | Лек            | 7                 | 2     | Л1.1 Л1.2<br>Л1.3Л2.1<br>Л2.2 Л2.3<br>Л2.4 Л2.5 |                 |
|               | Раздел 2. Основы рентгеноструктурного анализа |                |                   |       |                                                 |                 |
| 2.1           | Основы рентгеноструктурного анализа           | Лек            | 7                 | 1     |                                                 |                 |
| 2.2           | Основы рентгеноструктурного анализа           | Пр             | 7                 | 4     |                                                 |                 |
| 2.3           | Основы рентгеноструктурного<br>анализа        | Ср             | 7                 | 7     |                                                 |                 |

|     | Раздел 3. Группы симметрии и |     |   |    |  |
|-----|------------------------------|-----|---|----|--|
|     | структурные классы           |     |   |    |  |
| 3.1 | Группы симметрии и           | Лек | 7 | 4  |  |
|     | структурные классы           |     |   |    |  |
| 3.2 | Группы симметрии и           | Пр  | 7 | 4  |  |
|     | структурные классы           |     |   |    |  |
| 3.3 | Группы симметрии и           | Ср  | 7 | 8  |  |
|     | структурные классы           |     |   |    |  |
|     | Раздел 4. Основы             |     |   |    |  |
|     | кристаллохимии               |     |   |    |  |
| 4.1 | Основы кристаллохимии        | Лек | 7 | 4  |  |
|     |                              | -   |   |    |  |
| 4.2 | Основы кристаллохимии        | Пр  | 7 | 8  |  |
| 4.3 | 0                            | C   | 7 | 8  |  |
| 4.3 | Основы кристаллохимии        | Ср  | / | 8  |  |
|     | Раздел 5. Систематическая    |     |   |    |  |
|     | кристаллохимия               |     |   |    |  |
| 5.1 | Систематическая              | Лек | 7 | 2  |  |
|     | кристаллохимия               |     |   |    |  |
| 5.2 | Систематическая              | Пр  | 7 | 10 |  |
|     | кристаллохимия               |     |   |    |  |
| 5.3 | Систематическая              | Ср  | 7 | 7  |  |
|     | кристаллохимия               |     |   |    |  |
|     | Раздел 6. Обобщенная         |     |   |    |  |
|     | кристаллохимия               |     |   |    |  |
| 6.1 | Обобщенная кристаллохимия    | Лек | 7 | 4  |  |
|     |                              |     |   |    |  |
| 6.2 | Обобщенная кристаллохимия    | Пр  | 7 | 8  |  |
| 6.2 | OSOSWANNAG ISTORIA HILAYANA  | Cn  | 7 | 7  |  |
| 6.3 | Обобщенная кристаллохимия    | Ср  | 1 | /  |  |

## Список образовательных технологий

| 1 | Дискуссионные технологии (форум, симпозиум, дебаты, аквариумная дискуссия, панельная дискуссия, круглый стол, фасилитированная и т.д.) |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------|--|
| 2 | 2 Информационные (цифровые) технологии                                                                                                 |  |
| 3 | Технологии развития критического мышления                                                                                              |  |
| 4 | Технологии развития дизайн-мышления                                                                                                    |  |
| 5 | Активное слушание                                                                                                                      |  |

## 8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

## 8.1. Оценочные материалы для проведения текущей аттестации

Основные вопросы подготовки к модульной работе  $N\!\!\!\!\! \cdot \!\!\! 1$ 

- 1. История развития кристаллохимии
- 2. Дифракция рентгеновских лучей. Уравнение Лауэ. Методы получения

дифракционной картины. Автоматические дифрактометры. Уравнение Брэгга-Вульфа.

- 3. Рентгенография.
- 4. Нейтронография.
- 5. Электронография.
- 6. Кристаллографические проекции: сферическая, стереографическая.
- 7. Кристаллографические проекции: гномостереографическая, гномическая.
- 8. Ретикулярная плотность.
- 9. Пространственная решетка. Внутренняя симметрия кристалла.

### Параллелепипед повторяемости.

- 10. Простые формы кристаллов
- 11. Плотнейшая упаковка шаров.
- 12. Энантиоморфизм. Анизотропия кристаллов.
- 13. Структура льда. Водородная связь. Вода
- 14. Открытые элементы симметрии и их сочетания с трасляциями.
- 15. Закрытые операции и элементы симметрии кристаллов.
- 16. Энергия решетки и цикл Борна-Габера.
- 17. Изоморфизм и полиморфизм.
- 18. Структуры бинарных соединений (NaCl, CsCl, ZnS (сфалерит), ZnS (вюртцит), NiS, BN, CaF2 (флюорит), TiO2 (рутил), Cu2O (куприт), FeS2 (пирит)).
  - 19. Фулерены и нанотрубки. Кристаллическая структура?
  - 20. Кристаллогенез в растворах
  - 21. Кристаллогенез в расплавах
  - 22. От чего зависит спайность кристалла?
- 23. Понятие кристаллической структуры. Основные модели (статические и динамические, дискретные и континуальные).
- 24. Симметрия молекул и внешней формы кристаллов. Кристаллографические точечные группы (32 кристаллических класса).
  - 25. Винтовые оси. Плоскости скользящего отражения.
  - 26. Структурные типы простых веществ (металлы и неметаллы)
  - 27. Молекулярные кристаллы (органические соединения)
- 28. Структура координационных соединений. Координационное число и координационный многогранник
  - 29. Жидкие кристаллы. Характеристика. Жидкокристаллическое состояние.
- 30. Симметрия внешней формы кристаллов. Кристаллографические точечные группы (кристаллические классы). Сингонии.
  - 31. Плотнейшие шаровые упаковки и кладки.
  - 32. Структурный тип перовскита.
  - 33. Структурный тип шпинели.
  - 34. Кристаллохимия силикатов.
  - 35. Кристаллические состояния олова и его соединений
  - 36. Кристаллические состояния серы и ее соединений
  - 37. Аллотропные модификации углерода.
- 38. Молекулярные кристаллы (органические соединения). Межмолекулярное взаимодействие в атом-атомном представлении
  - 39. Дефекты в кристаллах и их влияние на свойства кристаллов

## Основные вопросы подготовки к модульной работе N = 2

- 1. Кристаллографические проекции: сетка Вульфа.
- 2. Одномерный ряд. Период идентичности.
- 3. Трансляция. Двумерная решетка. Виды параллелограммов.
- 4. Кристаллографические системы. Сингонии.
- 5. Элементарная ячейка. Типы решеток.
- 6. Символы узлов, рядов и плоскостей.
- 7. Энергия решетки. Уравнение Борна.

- 8. Доказать отсутствие в кристаллах осей 5-го порядка и порядков выше шестого. Квазикристаллы.
  - 9. Координационное число и координационный многогранник.
  - 10. Решетчатое строение графита.
  - 11. Точечные группы симметрии решёток низших сингоний.
  - 12. Точечные группы симметрии решёток средних сингоний.
  - 13. Решётки высших сингоний и их точечные группы симметрии.
  - 14. Правильные многогранники. Выделение в реальных кристаллах. Параметры
  - 15. Энергия решетки. Уравнение Капустинского.
  - 16. Чем определяется характер двумерной решетки?
  - 17. Чем определяется элементарная ячейка и ее форма?
- 18. Примитивные элементарные ячейки, соответствующие кристаллографическим системам.
- 19. Типы химических связей в кристаллах. Ионные, атомные, молекулярные кристаллы. Металлы
- 20. Базы структурных данных. Использование рентгеноструктурных и кристаллохимических данных в химии, молекулярной биологии.
  - 21. Решетки Бравэ. Пространственные группы.
- 22. Кристаллохимические радиусы. Металлические и ионные радиусы. Ковалентные и ван-дер-ваальсовы радиусы.
  - 23. Дефекты в кристаллах: вакансии
  - 24. Дефекты в кристаллах: междоузлия
  - 25. Дефекты в кристаллах: дислокации
  - 26. Дефекты в кристаллах: деформации
  - 27. Элементы симметрии и операции симметрии
  - 28. Выращивание кристаллов метод Чохральского

практические работы по темам  $N_2$  1 -  $N_2$  6

способ: на компьютере

результаты: презентация на русском и английском языках

3 работы (до 15 баллов каждая)

#### 2.вид:

контрольная работа № 1 (до 10 баллов)

контрольная работа № 2 (до 10 баллов)

способ: традиционный

результаты: оформленные по заданию бумажные бланки с решениями

3.вид: вид: выполнение самостоятельной работы - до 12 баллов

способ: на компьютере

результаты: тезисы доклада на русском и английском языках, оформленные в соответствии с требованиями

4. вид: посещаемость - 0,5 балла - занятие

## 8.2. Оценочные материалы для проведения промежуточной аттестации

Вопросы к зачету.

- 1. Кристаллическая структура и способы ее моделирования.
- 2. Одномерный ряд, трансляция, период идентичности. Двумерная решетка.
- 3. Базы структурных данных. Использование рентгеноструктурных и кристаллохимических данных в химии, молекулярной биологии.
  - 4. Стереохимический и кристаллоструктурный аспекты кристаллохимии.
- 5. Основы рентгеноструктурного анализа. Сравнение дифракционных методов изучения кристаллической структуры (рентгенография, нейтронография, электронография).
- 6. Симметрия внешней формы кристаллов. Кристаллографические точечные группы (кристаллические классы). Сингонии.

- 7. Внутренняя симметрия кристалла. Кристаллическая решетка. Элементарная ячейка. Трансляция. Винтовые оси. Плоскости скользящего отражения.
  - 8. Решетки Бравэ. Пространственные группы.
  - 9. Типы химических связей в кристаллах.
  - 10. Плотнейшие шаровые упаковки и кладки.
- 11. Кристаллохимические радиусы. Металлические и ионные радиусы. Ковалентные и ван-дер-ваальсовы радиусы.
  - 12. Координационное число и координационный многогранник
  - 13. Структурные типы простых веществ и бинарных соединений.
  - 14. Структурный тип перовскита.
  - 15. Структурный тип шпинели.
  - 16. Кристаллохимия силикатов.
  - 17. Кристаллическая структура координационных соединений.
  - 18. Молекулярные кристаллы (органические соединения).
- 19. Межмолекулярное взаимодействие в атом-атомном представлении (органические кристаллы).
  - 20. Жидкокристаллическое состояние.

## 8.3. Требования к рейтинг-контролю

Рейтинг дисциплины - 100 баллов (зачет от40 баллов)

- 1. практические работы по темам № 1 № 6 3 работы (до 15 баллов каждая)
- 2. контрольная работа № 1 (до 10 баллов), контрольная работа № 2 (до 10 баллов)
- 3.выполнение самостоятельной работы до 12 баллов
- 4. вид: посещаемость 0,5 балла занятие

# 9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

### 9.1. Рекомендуемая литература

## 9.1.1. Основная литература

| Шифр | Литература                                                                     |  |  |
|------|--------------------------------------------------------------------------------|--|--|
| Л1.1 | Филатов, Кривовичев, Бубнова, Систематическая кристаллохимия, Санкт-           |  |  |
|      | Петербург: Издательство Санкт-Петербургского государственного университета,    |  |  |
|      | 2019, ISBN: 978-5-288-05958-2,                                                 |  |  |
|      | URL: https://znanium.com/catalog/document?id=373603                            |  |  |
| Л1.2 | Филатов С.К., Кривовичев С.В., Общая кристаллохимия, Санкт-Петербург:          |  |  |
|      | Издательство Санкт-Петербургского государственного университета, 2018, ISBN:   |  |  |
|      | 978-5-288-05812-7,                                                             |  |  |
|      | URL: https://znanium.com/catalog/document?id=333199                            |  |  |
| Л1.3 | Басалаев Ю. М., Кристаллофизика и кристаллохимия, Кемерово: КемГУ, 2020, ISBN: |  |  |
|      | 978-5-8353-2721-8,                                                             |  |  |
|      | URL: https://e.lanbook.com/book/162600                                         |  |  |

### 9.1.2. Дополнительная литература

| Шифр | Литература                                                                                                                                     |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Л2.1 | Леонюк, Копорулина, Волкова, Мальцев, Кристаллография: зарождение, рост и морфология кристаллов, Москва: Юрайт, 2024, ISBN: 978-5-534-04738-7, |  |  |
|      | Морфология кристаллов, Москва. Юраит, 2024, ISBN. 978-3-334-04738-7, URL: https://urait.ru/bcode/539170                                        |  |  |
| Л2.2 | Батаев, Батаев, Кристаллография. Формы кристаллических многогранников,                                                                         |  |  |
|      | Новосибирск: Новосибирский государственный технический университет (НГТУ),                                                                     |  |  |
|      | 2018, ISBN: 978-5-7782-3708-7,                                                                                                                 |  |  |
|      | URL: https://znanium.com/catalog/document?id=396046                                                                                            |  |  |

| Л2.3 | Батаев, Батаев, Кристаллография. Обозначение и вывод классов симметрии, Новосибирск: Новосибирский государственный технический университет (НГТУ), 2018, ISBN: 978-5-7782-3707-0, |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|      | URL: https://znanium.com/catalog/document?id=396045                                                                                                                               |  |
| Л2.4 | Батаев, Батаев, Лазуренко, Кристаллография. Методы проецирования кристаллов,                                                                                                      |  |
|      | Новосибирск: Новосибирский государственный технический университет (НГТУ),                                                                                                        |  |
|      | 2018, ISBN: 978-5-7782-3709-4,                                                                                                                                                    |  |
|      | URL: https://znanium.com/catalog/document?id=396044                                                                                                                               |  |
| Л2.5 | Батаев, Батаев, Веселов, Кристаллография. Индицирование граней и ребер                                                                                                            |  |
|      | кристаллов, Новосибирск: Новосибирский государственный технический                                                                                                                |  |
|      | университет (НГТУ), 2019, ISBN: 978-5-7782-3870-1,                                                                                                                                |  |
|      | URL: https://znanium.com/catalog/document?id=396043                                                                                                                               |  |

## 9.3.1 Перечень программного обеспечения

| 1 | Adobe Acrobat Reader |
|---|----------------------|
| 2 | OpenOffice           |

## 9.3.2 Современные профессиональные базы данных и информационные справочные системы

| 1 Научная электронная библиотека eLIBRARY.RU (подписка на журналы) |                                             |  |
|--------------------------------------------------------------------|---------------------------------------------|--|
| 2                                                                  | Журналы American Institute of Physics (AIP) |  |
| 3                                                                  | БД INSPEC EBSCO Publishing                  |  |
| 4                                                                  | БД Scopus                                   |  |
| 5                                                                  | БД Web of Science                           |  |

### 10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

| Аудит-я | Оборудование                                                                                                                                     |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5-310   | Проектор Экран Компьютер (монитор, системный блок, клав., мышь) Доска -                                                                          |  |
|         | 1шт. Трибуна -1 шт. Комплект учебной мебели                                                                                                      |  |
| 5-311   | Проектор Экран Компьютер (монитор, системный блок, клав., мышь) Доска - 1шт. Трибуна -1 шт. Комплект учебной мебели Стенд "Периодическая таблица |  |

# 11. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Учебно-методическое и информационное обеспечение дисциплины

- 1) Рекомендуемая литература
- а) Основная литература:
- 1. Басалаев, Ю.М. Кристаллофизика и кристаллохимия / Ю.М. Басалаев; Мин. обр. и науки РФ, ФГБОУ ВПО «Кемеровский государственный универ-ситет». Кемерово: Кемеровский государственный университет, 2014. 403 с.: ил. Режим доступа: http://biblioclub.ru/index.php?page=book&id=278304
- 2. Урусов В.С., Ерёмин Н.Н. Кристаллохимия. Краткий Курс. МГУ, 2010, 256 с.— Электронный ресурс. Режим доступа: http://www.iprbookshop.ru/13343.html
- 3.Пугачев, В.М. Кристаллохимия / В.М. Пугачев. Кемерово: Кемеровский государственный университет, 2013.-104 с. Режим доступа: http://biblioclub.ru/index.php? page=book&id=232461.

### б) Дополнительная литература:

1. Белов Н.П. Основы кристаллографии и кристаллофизики. Часть І. Введение в теорию симметрии кристаллов [Электронный ресурс]: учебное пособие. — СПб.: Университет ИТМО, 2009. — 45 с. — Режим доступа: http://www.iprbookshop.ru/67480.html

- 2. Строение вещества. Строение кристаллов [Электронный ресурс]: учебное пособие / А.М. Голубев [и др.]. М.: Московский государственный технический университет имени Н.Э. Баумана, 2010. 36 с. Режим доступа: http://www.iprbookshop.ru/31270.html
- 3. Куприянов М.Ф., Рудская А.Г., Кофанова Н.Б., Кабиров Ю.В., Разумная А.Г. Современные методы структурного анализа веществ. ЮФУ. 2009. 288 с. Электронный ресурс. Режим доступа: http://www.iprbookshop.ru/47135.html
  - 4. Новоселов, К.Л. Основы геометрической кристаллографии /
- К.Л. Новоселов; Томск: Издательство Томского политехнического университета, 2015. 73 с.: ил., табл., схем. Режим доступа:

http://biblioclub.ru/index.php?page=book&id=442772

5. Ремпель, А.А. Нестехиометрия в твердом теле / А.А. Ремпель, А.И. Гусев. – Москва: Физматлит, 2018. – 638 с.: ил. – Режим доступа: http://biblioclub.ru/index.php?page=book&id=485335

Современные профессиональные базы данных и информационные справочные системы

- 3EC «ZNANIUM.COM» www.znanium.com:
- ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/;
- ЭБС «Лань» http://e.lanbook.com

Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- Электронная образовательная среда ТвГУ http://lms.tversu.ru
- Научная библиотека ТвГУ http://library.tversu.ru
- Сайт о химии http://www.xumuk.ru/
- Сайт химического факультета МГУ

http://www.chem.msu.ru/rus/teaching/phys.html

Методические материалы для обучающихся по освоению дисциплины

1. Задания и контроль самостоятельной работы

Перед каждым практическим занятием необходима самостоятельная работа по подготовке к его выполнению по индивидуальным темам. Для этого обучающемуся предлагаются темы для самостоятельной проработки. Данные, которые будут получены в результате выполнения тем, будут использованы в практических работах. Все практические работы, не выполненные в аудиторные часы занятий, так же остаются в качестве домашнего задания. Срок выполнения — две недели, после чего максимальное количество баллов за соответствующее задание снижается в два раза.

2. Методические указания по подготовке к практическим занятиям

Данный курс относится к обязательным дисциплинам и является важным для студентов, специализирующихся на всех кафедрах химико-технологического факультета. Специфика курса заключается в том, что все темы связаны между собой. Поэтому изучение каждой последующей нельзя начинать, не изучив предыдущую тему. Таким образом, изучать материал необходимо систематически и особо останавливаться на контроле знаний студентов.

В связи со значительным сокращением объема аудиторной нагрузки самостоятельная работа при изучении данного курса играет решающую роль. Вследствие этого в качестве усвоения пройденного материла студентам, задается домашнее задание, предлагаются контрольные работы в каждом модуле и на каждом новом занятии проводится экспрессопрос. На занятиях также большое внимание уделяется написанию студентами тезисов докладов с целью проверки умения самостоятельно прорабатывать научную литературу и докладывать ее коллегам.

Тематическое наполнение дисциплины (для дополнительного самостоятельного изучения)

#### 1. ВВЕЛЕНИЕ

Предмет и задачи кристаллохимии. Кристаллическая структура и способы ее моделирования. Тепловое движение атомов. Электронная плотность (топологический анализ). Базы структурных данных.

Стереохимический и кристаллоструктурный аспекты кристаллохимии. Использование рентгеноструктурных и кристаллохимических данных в химии, молекулярной биологии. Обобщенная кристаллохимия.

## 2. ОСНОВЫ РЕНТГЕНОСТРУКТУРНОГО АНАЛИЗА

Дифракция рентгеновских лучей. Уравнение Лауэ. Методы получения дифракционной картины. Автоматические дифрактометры. Уравнение Брэгга-Вульфа. Индексы узловых сеток. Межплоскостные расстояния. Интенсивность дифракционного луча. Структурная амплитуда. Формула электронной плотности.

Сравнение дифракционных методов изучения кристаллической структуры (рентгенография, нейтронография, электронография).

## 3. ГРУППЫ СИММЕТРИИ И СТРУКТУРНЫЕ КЛАССЫ

Симметрийные операции и элементы симметрии. Поворотные и инверсионные оси. Международная номенклатура (символы Германа - Могена) и симметрийные обозначения Шенфлиса. Точечные группы. Обычные и стереографические проекции. Симметрия молекул. Структурные классы и симметрийные свойства молекул. Полярность и хиральность молекул. Энаниомеры. Многогранники. Изоэдры и их комбинации. Изогоны.

Трансляция. Параллелепипеды повторяемости. Кристаллическая рещетка и ее симметрия. Элементарная ячейка. Кристаллографические точечные группы (кристаллические классы).

Зависимость физических свойств кристаллов от их симметрии. Свойства как тензоры 2-го ранга (электропроводность, диэлектрическая проницаемость, тепловое расширение и др. Пиро- и пьезоэлектрические свойства.

Винтовые оси. Плоскости скользящего отражения. Решетки Бравэ.

Пространственные группы симметрии (принцип их вывода). Структурные классы атомных и молекулярных кристаллов.

### 4. ОБЩАЯ КРИСТАЛЛОХИМИЯ

Типы химических связей в кристаллах. Гомо- и гетеродесмические структуры. Координационные, островные, цепочечные, слоистые, каркасные структуры. Координационное число (КЧ) и координационный многогранник (КМ) или полиэдр. Собственная симметрия КМ. Структурные типы.

Описание структур в терминах плотнейших шаровых упаковок (ПШУ) и плотнеших шаровых кладок (ПШК).

Термодинамика кристаллов. Расчет термодинамических функций.

Кристаллохимические радиусы атомов. Металлические и ионные радиусы. Ковалентные и ван-дер-ваальсовы радиусы.

Кристаллохимические явления. Изоструктурность. Изоморфизм. Полиморфизм., политипия. Морфотропия.

## 5. СИСТЕМАТИЧЕСКАЯ КРИСТАЛЛОХИМИЯ

Простые вещества. Типичные и аномальные структуры металлов. Особенности координации переходных и непереходных металлов. Кристал-лические структуры неметаллов. Бинарные и тернарные соединения.

Структурные типы перовскита и шпинели.

Строение силикатов. Классификация структур силикатов.

Кристаллические структуры координационных соединений. Структуры соединений с полидентатнымилигандами (комплексонаты, комплексы краун-эфиров).

Общая характеристика молекулярных кристаллов. Особенности органических кристаллов. Специфические межмолекулярные контакты. Водородная связь. Гетеромолекулярные кристаллы. Кристаллогидраты. Клатраты. Молекулярные комплексы.

Межмолекулярное взаимодействие (MB) в атом-атомном представлении (расчет энергии MB для органических кристаллов).

## 6. ОБОБЩЕННАЯ КРИСТАЛЛОХИМИЯ

Конденсированные фазы с разной степенью упорядоченности. Дальний и ближний порядок. Кристаллы и квазикристаллы. Мезофазы.

Строение жидких кристаллов. Нематики, холестерики, смектики.

Жидкокристаллические полимеры.